Tag Archives: bearing roller bearing

China OEM Factory Professional Precision Oscillating Spherical Roller Plain Knuckle Bearing Ball Joint Rod Ends Bearing double row ball bearing

Product Description

Product Description

 

Outer ring of carbon chromium steel,fractured,hardened and phosphated,sliding surface treated with MoS2.Inner ring of carbon chromium steel,hardened and phosphated,sliding surface treated with MoS2. All bearings have an annular groove and lubrication holes in each ring except those of the E design. Bearings of the 2RS design are fitted with seals at both sides.

 

 

Product Parameters

Model No. Dimension (mm) Load Rating (Kn) Weight (kg)
GEG6E 6 16 9 5 13 5.5 28 0.008
GEG8E 8 19 11 6 16 8 40 0.014
GEG10E 10 22 12 7 18 10 55 0.571
GEG15E 15 30 16 10 25 20 106 0.048
GEG17E 17 35 20 12 29 30 146 0.08
GEG20E 20 42 25 16 35.5 50 240 0.152
GEG30E 30 55 32 20 47 80 401 0.296
GEG35E 35 62 35 22 53 99 485 0.402
GEG40E 40 68 40 25 60 115 640 0.535
GEG50E 50 90 56 36 80 245 1220 1.42
GEG60E 60 105 63 40 92 310 1560 2.09
GEG70E 70 120 70 45 105 400 2000 3.01
GEG80E 80 130 75 80 115 475 2440 3.6
GEG90E 90 150 85 55 130 605 3000 5.5
GEG100E 100 160 85 55 140 650 3286 6.04

company information

Our Advantages

 

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2012,sell to North America(30.00%),South America(20.00%),Southeast Asia(20.00%),Eastern Europe(10.00%),Africa(10.00%),Mid East(5.00%),Central America(5.00%). There are total about 11-50 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Ball Bearing,Roller Bearing,Auto Bearing

4. why should you buy from us not from other suppliers?
HangZhou LBR Bearing CO.,LTD is specialized in supplying import bearing.

5. what services can we provide?
Accepted Delivery Terms: FOB,CIF;
Accepted Payment Currency:USD,EUR,JPY,CAD,AUD,HKD,GBP,CNY,CHF;
Accepted Payment Type: T/T,L/C,PayPal,Western Union,Escrow;
Language Spoken:English,Chinese,Spanish,Japanese,Portuguese,German,Arabic,French,Russian,Korean,Hindi,Italian

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Material: Bearing Steel
Thickness: 18mm
Model: Ncf209V
Package Size: 6.00cm * 8.00cm * 3.00cm
Package Gross Weight: 2.000kg
Samples:
US$ 2.54/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

rod end bearing

Selecting Size and Thread Type for Rod End Bearings

When choosing the appropriate size and thread type for a rod end bearing, several considerations are important:

1. Load Requirements: Determine the expected loads the rod end bearing will need to support. Choose a size and material that can handle these loads without deformation or premature wear.

2. Thread Direction: Consider whether you need left-hand or right-hand threads. This depends on the specific application and the direction in which the rod end bearing will be subject to forces or adjustments.

3. Thread Size and Pitch: Select the thread size and pitch that match the mating components or the mounting point. Ensure compatibility to avoid threading issues during installation.

4. Environmental Conditions: Consider the operating environment. If the rod end bearing will be exposed to moisture, chemicals, or extreme temperatures, choose a material and thread type that can withstand these conditions without corrosion or degradation.

5. Lubrication: Evaluate the lubrication method. Some rod end bearings have built-in lubrication features, while others require external lubrication. Ensure that the selected bearing and thread type align with your lubrication approach.

6. Misalignment Requirements: If the application involves misalignment, select a rod end bearing with appropriate articulation capabilities, which may require specific size and thread choices to allow for the necessary movement.

7. Compatibility: Ensure that the rod end bearing’s size and thread type are compatible with the connecting components, such as linkages, control arms, or push/pull rods.

8. Adjustability: In applications where adjustability is required, consider rod end bearings with male and female threads to allow for fine-tuning and alignment.

9. Regulations and Standards: Check if there are industry or safety regulations that dictate specific size or thread requirements for your application.

10. Maintenance: Consider ease of maintenance. Some rod end bearings have features that facilitate inspection and lubrication, which can be essential for extending their lifespan.

11. Cost and Availability: Finally, factor in the cost and availability of the chosen rod end bearing size and thread type. Ensure it fits within your budget and can be readily sourced when needed.

By carefully evaluating these considerations, you can select the most suitable rod end bearing size and thread type for your specific application, ensuring optimal performance and longevity.

rod end bearing

Maintenance Practices to Extend the Life of Rod End Bearings

Rod end bearings play a crucial role in various mechanical systems, and proper maintenance can significantly extend their lifespan. Here are some specific maintenance practices to consider:

1. Lubrication: Regularly lubricate the rod end bearing according to the manufacturer’s recommendations. Proper lubrication reduces friction, minimizes wear, and prevents corrosion. Use high-quality lubricants suitable for the application’s conditions.

2. Inspection: Perform routine inspections to check for signs of wear, damage, or contamination. Look for play, unusual noises, visible damage, and any other indicators mentioned earlier. Timely detection of issues allows for prompt corrective action.

3. Cleanliness: Keep the surrounding environment clean to prevent contamination. Dust, dirt, and debris can lead to premature wear and damage. Regularly clean the bearing housing and sealing mechanisms.

4. Environmental Protection: In applications exposed to harsh environments, consider protective measures such as seals and shields to prevent contamination and reduce exposure to moisture, dust, or chemicals.

5. Alignment: Ensure proper alignment of rod end bearings within the system. Misalignment can increase stress on the bearing and lead to premature failure. Correct any alignment issues promptly.

6. Avoid Overloading: Be mindful of load capacities and avoid subjecting rod end bearings to excessive loads. Overloading can lead to rapid wear and shortened bearing life. Use bearings with appropriate load ratings for the application.

7. Regular Maintenance Schedule: Establish a maintenance schedule that includes lubrication, inspections, and cleaning. The frequency of maintenance depends on factors like operating conditions, load, and the manufacturer’s recommendations.

8. Replacement of Seals: If your rod end bearings have seals or shields, periodically check their condition. Replace damaged or worn-out seals to maintain effective contamination protection.

9. Storage: When storing spare rod end bearings, ensure they are kept in a clean, dry, and temperature-controlled environment. Use appropriate storage methods to prevent corrosion or damage before installation.

10. Expert Advice: If you’re unsure about maintenance or replacement procedures, consult with the bearing manufacturer or a qualified technician for guidance and assistance.

By following these maintenance practices, you can extend the life of rod end bearings, reduce downtime, and ensure the reliable performance of the systems in which they are used.

rod end bearing

Factors to Consider When Selecting a Rod End Bearing for a Specific Application

Choosing the right rod end bearing for a specific application is crucial to ensure optimal performance and longevity. Several factors should be taken into account during the selection process:

1. Load Capacity: Consider the magnitude and type of loads the bearing will need to support. Determine whether it will experience radial, axial, or a combination of loads. Select a rod end bearing with the appropriate load capacity rating to handle these loads.

2. Misalignment: Evaluate the degree of angular misalignment that may occur in the application. Some rod end bearings are designed to compensate for misalignment better than others. Choose a bearing that can accommodate the expected misalignment without compromising performance.

3. Environment: Take into account the operating environment. Consider factors like temperature, humidity, chemical exposure, and the presence of contaminants. Select a rod end bearing with suitable materials and protective features to withstand these conditions.

4. Lubrication: Proper lubrication is essential for the longevity and smooth operation of rod end bearings. Determine the lubrication method and frequency required for the application. Some rod end bearings come with built-in lubrication provisions or self-lubricating materials.

5. Thread Type and Size: The threaded shank of the rod end bearing should match the components it connects to. Consider the thread size and type (e.g., right-hand or left-hand threads) to ensure compatibility with your application.

6. Corrosion Resistance: If the application is in a corrosive environment, select a rod end bearing with corrosion-resistant materials or coatings. This is especially important in marine, chemical, or industrial settings.

7. Size and Weight Constraints: Ensure that the chosen rod end bearing fits within the space and weight limitations of the application. Measure the available space and consider weight restrictions when making your selection.

8. Operating Speed: Take into account the rotational or oscillatory speed of the bearing. Some rod end bearings are designed for high-speed applications, while others are better suited for low-speed or static applications.

9. Regulatory Compliance: In some industries, specific standards or regulations may apply to components like rod end bearings. Ensure that the selected bearing complies with any relevant industry standards or requirements.

10. Budget Constraints: While quality is essential, consider your budget constraints. Different rod end bearings come with varying price points. Choose a bearing that provides the necessary performance without exceeding your budget.

By carefully considering these factors, you can select the most suitable rod end bearing for your specific application, ensuring reliable and efficient operation.

China OEM Factory Professional Precision Oscillating Spherical Roller Plain Knuckle Bearing Ball Joint Rod Ends Bearing   double row ball bearingChina OEM Factory Professional Precision Oscillating Spherical Roller Plain Knuckle Bearing Ball Joint Rod Ends Bearing   double row ball bearing
editor by CX 2024-04-11

China Best Sales Factory Professional Precision Oscillating Spherical Roller Plain Knuckle Bearing Ball Joint Rod Ends Bearing wholesaler

Product Description

Product Description

 

New Item Old Item Structure Specifications(dxDxT)mm Weight/kg
22207 3507 MB/CA/CC/EK/CK/CMW33 35x72x23 0.43
22208 3508 MB/CA/CC/E/K/CK/CMW33 40X80X23 0.55
22209 3509 MB/CA/CC/E/K/CK/CMW33 45X85X23 0.59
22210 3510 MB/CA/CC/E/K/CK/CMW33 50X90X23 0.64
22211 3511 MB/CA/CC/E/K/CK/CMW33 55X1 or 113000) with the rear code K30 and the 1:30 rear-mounted spherical roller bearing with the code name K30. When this type of bearing is matched with a conical shaft, the radial clearance of the bearing can be adjusted by moving the inner ring in the axial direction.

Mainly applicable cage: stamped steel plate reinforced cage (suffix E, very few in China). Stamped steel cage (suffix CC), glass fiber reinforced polyamide 66 cage (suffix TVPB), machined brass two-piece cage (suffix MB). Machined brass integral cage (suffix CA), stamped steel cage for vibration applications (suffix JPA). Brass cage (suffix EMA) for vibration applications. For the same structure, the code on the bearing may be different.

Main uses: papermaking machinery, reduction gear, railway vehicle axles, rolling mill gearbox bearing housings, rolling mill rolls, crushers, vibrating screens, printing machinery, woodworking machinery, various industrial reducers, vertical self-aligning bearings with seats .
Spherical roller bearings are the rolling-element bearings that permit rotation with low friction, and permit angular misalignment. Typically these bearings support a rotating shaft in the bore of the inner ring that may be misaligned in respect to the outer ring. The misalignment is possible due to the spherical internal shape of the outer ring and spherical rollers.

APPLICATION

Recommended Products

Company Profile

Packaging & Shipping

FAQ

Q: Are you trading company or manufacturer ?
A: We are factory. Welcome to visit our factory.

Q: How to get price ?
A: Please send inquiry directly. Our salesman replys very fast.

Q: Do you provide Free Samples ?
A: Yes, we could offer you free samples, but do not pay the cost of freight.

Q: What’s the MOQ ?
A: The MOQ depends on bearing’s model number and price.Usually the total cost will be $1000 at least.

Q: What’s your Payment Terms ?
A:  T/T (Bank Wire)
Western Union
Money Grame
Paypal

Q: How long is your lead-time?
A: Generally it is 2 to 4 days if the goods are in stock, or it will be about 6 to 15 days depends on quantity. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Quality Level: P0/P6/P5/P4/P2
Number of Row: Double Row
Material1: Chrome Steel Gcr15
Cage: Double Row Ca Cc E MB Cage
Lubrication: Grease Lubrication
Feature: Low Noise. Long Life .High
Customization:
Available

|

Customized Request

rod end bearing

Contribution of Rod End Bearings to Complex Motion in Industrial Machinery

Rod end bearings play a significant role in ensuring the proper functioning of industrial machinery with complex motion. Here’s how they contribute:

1. Articulation and Pivoting:

Industrial machinery often requires components that can pivot and articulate in multiple directions. Rod end bearings provide a flexible connection point, allowing for a wide range of motion. They are commonly used in applications like robotic arms, conveyor systems, and material handling equipment, where precise movement and adaptability are essential.

2. Load Transmission:

Industrial machinery frequently deals with heavy loads and dynamic forces. Rod end bearings efficiently transmit these loads from moving components to stationary structures. Whether it’s the linear movement of a press or the tilting motion of a heavy-duty crane, rod end bearings enable the smooth transfer of forces, reducing wear and tear on the machinery.

3. Misalignment Compensation:

Machinery parts can become misaligned due to manufacturing tolerances, wear, or other factors. Rod end bearings excel at compensating for misalignments, ensuring that moving parts remain connected and operational. This capability is crucial in applications with variable alignment requirements, such as industrial automation systems and assembly line equipment.

4. Precision and Control:

Many industrial processes demand precision and control over motion. Rod end bearings help achieve this by providing a reliable connection point that can be adjusted and fine-tuned. This precision is essential in applications like CNC machinery, where the accuracy of tool movement directly impacts the quality of the final product.

5. Corrosion Resistance:

Industrial machinery operates in diverse environments, some of which may expose components to moisture and corrosive substances. Rod end bearings are available in various materials, including stainless steel, which offers excellent corrosion resistance. This ensures the bearings’ longevity and reliability, even in challenging conditions.

Overall, rod end bearings contribute to the efficient and reliable operation of industrial machinery with complex motion requirements. Their ability to accommodate articulation, handle heavy loads, compensate for misalignment, provide precision, and resist corrosion makes them invaluable components in various industrial applications.

rod end bearing

Challenges and Solutions in Managing Load and Misalignment in Rod End Bearings

Rod end bearings often face challenges related to load capacity and misalignment in various applications. Here are the common challenges and solutions:

1. Radial and Axial Loads:

Challenge: Rod end bearings need to handle both radial and axial loads simultaneously in many applications.

Solution: Select rod end bearings with appropriate load ratings and materials to ensure they can withstand the expected loads. Also, proper maintenance and lubrication are essential for maximizing load-carrying capacity.

2. Misalignment:

Challenge: Misalignment can cause premature wear and reduced bearing lifespan.

Solution: Use self-aligning rod end bearings or incorporate spherical plain bearings to compensate for misalignment. Regular inspection and maintenance to correct any alignment issues are crucial.

3. Corrosion and Contaminants:

Challenge: Exposure to moisture, chemicals, and contaminants can lead to corrosion and damage.

Solution: Choose rod end bearings with suitable protective coatings or seals, such as PTFE liners or rubber boots, to prevent contaminants from entering. Stainless steel bearings offer enhanced corrosion resistance.

4. Lubrication:

Challenge: Inadequate lubrication can result in increased friction, overheating, and premature failure.

Solution: Follow the manufacturer’s lubrication recommendations and maintenance schedules. Proper lubrication ensures smooth operation and extends bearing life.

5. Shock and Impact Loads:

Challenge: Applications with frequent shock and impact loads can subject rod end bearings to excessive stress.

Solution: Choose rod end bearings with robust construction and materials to withstand shock loads. Regular inspections are necessary to detect early signs of damage.

By addressing these challenges with appropriate solutions, rod end bearings can perform optimally and provide long-lasting service in a wide range of applications.

rod end bearing

Design Principles and Functions of Rod End Bearings

Rod end bearings, also known as heim joints or rose joints, are essential components in various mechanical applications, where articulation and precise control of movement are required. These bearings are designed with specific principles and functions in mind:

Design Principles:

Rod end bearings consist of a spherical plain bearing, also known as a spherical plain bushing, within a housing. The design principles are as follows:

  • Spherical Plain Bearing: The heart of a rod end bearing is a spherical plain bearing. This bearing allows the inner ring to tilt and rotate in multiple directions. It consists of an inner and outer ring with a sliding layer of material in between, often made from self-lubricating materials.
  • Housing: The spherical plain bearing is housed within a protective casing, typically made of metal or other durable materials. The housing provides structural support and retains the bearing components.
  • Threaded Shank: The outer part of the housing is often shaped as a threaded shank, allowing for easy attachment to various mechanical components, such as linkages or control arms.
  • Lubrication Fittings: Many rod end bearings have provisions for lubrication fittings to ensure smooth articulation and reduce friction.

Functions:

Rod end bearings serve several crucial functions in mechanical systems:

  • Articulation: Rod end bearings provide articulation, enabling components to pivot, swivel, and move in multiple directions. This function is vital in applications requiring flexibility and control over movement.
  • Angular Misalignment Compensation: They can compensate for both static and dynamic angular misalignment. This is particularly useful in situations where components may not align perfectly due to varying factors like vibration or assembly tolerances.
  • Load Transmission: Rod end bearings can transmit static and dynamic loads, making them suitable for applications involving force or load transfer. They are used in machinery and equipment where precise control of loads is essential.
  • Precision Movement: These bearings provide precise control and movement, making them suitable for applications where accurate positioning of mechanical components is critical. This includes industries like aerospace and robotics.
  • Corrosion Resistance: Many rod end bearings are designed with corrosion-resistant materials or coatings, making them suitable for use in harsh environments, such as marine and industrial settings.
  • Durability: Rod end bearings are engineered for durability, allowing them to withstand challenging conditions and heavy-duty use. This ensures their reliability and longevity in demanding applications.
  • Versatility: Rod end bearings are versatile components used across various industries, including automotive, aerospace, industrial machinery, and marine applications. Their adaptability and reliability make them valuable to engineers and designers.

These design principles and functions of rod end bearings make them indispensable in a wide range of mechanical systems where articulation, load-bearing capacity, and precise control are required.

China Best Sales Factory Professional Precision Oscillating Spherical Roller Plain Knuckle Bearing Ball Joint Rod Ends Bearing   wholesalerChina Best Sales Factory Professional Precision Oscillating Spherical Roller Plain Knuckle Bearing Ball Joint Rod Ends Bearing   wholesaler
editor by CX 2024-04-11

China high quality Durable Rod End Cylindrical Roller Turbocharger Wheel Connecting Rod Housing Linear Steel Spherical Bearing drive shaft bearing

Product Description

Durable Rod End Cylindrical Roller Turbocharger Wheel Connecting Rod Housing Linear Steel Spherical Bearing

Product Description

Spherical roller bearings

Spherical roller bearings have 2 rows of rollers, a common sphered outer ring raceway and 2 inner ring raceways inclined at an angle to the bearing axis. The centre point of the sphere in the outer ring raceway is at the bearing axis. Therefore the bearings are self-aligning and insensitive to misalignment of the shaft relative to the housing, which can be caused, for example, by shaft deflection. Spherical roller bearings are designed to accommodate heavy radial loads, as well as heavy axial loads in both directions.

Product Parameters

Detailed Photos

Company Profile

HangZhou HONGSHI MACHINERY AND ELECTRICAL EQUIPMENT CO.,LTD. (formerly HangZhou Hengmai Bearing Co., Ltd.) was established in 2007, and HMMH is our own brand.
HMMH mainly produces spherical roller bearings, pillow block ball bearing, deep groove ball bearings and cylindrical roller bearings. Spherical roller bearing products range from 20mm to 1M, with the main production of crusher bearings 22300 series. Low noise deep groove ball bearings, product accuracy can reach ZV2, ZV3, ZV4, mainly produces motor bearings 6200, 6300 series. pillow block ball bearing, mainly producing UCP, UCF, UCFL, UCFC, UCT series, the products are mainly used in agricultural machine and peeling machine. We also use the bainite quenching process to ensure the hardness of the bearing, using good testing equipment, such as roundness meter, profiler, roughness meter, universal measuring instrument, spectrometer, metallographic microscope to control each detail quality monitoring.

To ensure product quality, we have established a strict quality control system and an experienced team of engineers and after-sales service. From forgings to final products  we have a strict quality control system.

Your needs are our production motivation, and your satisfaction is our goal. We are willing to serve our customers with the goal of “Quality First, Service First, Credit First”.

FAQ

1.A:How can I do customized design?
   Q:We are request for the drawing with the measurement, material and other speicifcation as details as you can, and for the customized products, our MOQ is 10 pcs per design

2.Q: How can I get a sample?
   A: If you only need 1or 2 samples for small size inner weight below 2kgs, we can supply free samples and we have stocks, you can just pay the shipping cost .if you need several design samples, then you should paid the cost with shipping.

3.Q: What package do you usually use?
   A: Usually we use single box or tape. Also according to customer’s special requirement.

4.Q:How long do you need for production? Or what’s your production lead time?
   A:Usually could be sent our in 2-3 days if in stock for samples. Customized item usually need 14-30 days to produce.

5.Q:How long will you guarantee your quality?
   A:We supply test report and quality control photos from materials to finished goods during production.
 
6.Q:How to do after sale service?
   A:Good after-sale service is our promise. Before placing orders, our professional engineer will discuss all technical data and your bearing usage condition and CZPT you what kind of steel materials to fit your products and usage life possible.

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Spherical Roller Bearing
Quality: High Quality
Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Large (200-430mm)
Material: Bearing Steel
Customization:
Available

|

Customized Request

rod end bearing

Recent Advancements in Rod End Bearing Technology

Advancements in rod end bearing technology have led to improved performance and durability. Here are some insights into recent developments:

1. Enhanced Materials: Manufacturers are using advanced materials, including high-strength alloys and composites, to create rod end bearings that offer increased load-carrying capacity and improved corrosion resistance. These materials contribute to longer bearing life and better performance in challenging environments.

2. Sealing and Shielding: Innovations in sealing and shielding technologies have improved the protection of rod end bearings from contaminants, moisture, and harsh environmental conditions. These advancements extend maintenance intervals and increase bearing reliability.

3. Lubrication: Self-lubricating rod end bearings have become more prevalent, reducing the need for frequent manual lubrication. These bearings are designed to provide consistent and long-lasting lubrication, resulting in reduced maintenance requirements and longer service life.

4. 3D Modeling and Simulation: Manufacturers are increasingly using 3D modeling and simulation techniques to optimize rod end bearing designs. This allows for the creation of bearings that can handle higher loads and offer superior wear resistance while maintaining compact dimensions.

5. Customization: The ability to customize rod end bearings to specific application requirements has improved. This includes options for different thread types, materials, and sizes. Customization ensures that the bearing can meet the exact needs of the equipment it serves.

6. Environmental Sustainability: Some recent advancements focus on producing rod end bearings in an environmentally sustainable manner. Manufacturers are exploring eco-friendly materials and production processes to reduce the environmental impact of bearing manufacturing.

7. IoT Integration: In industrial applications, the integration of Internet of Things (IoT) technology allows for real-time monitoring and predictive maintenance of rod end bearings. Sensors and data analytics help detect early signs of wear or damage, optimizing maintenance schedules and minimizing downtime.

These recent advancements in rod end bearing technology have collectively improved the reliability, durability, and performance of these components in various mechanical systems. As technology continues to evolve, rod end bearings are expected to play an even more critical role in enhancing the efficiency and longevity of machinery and equipment.

rod end bearing

Signs of Wear or Damage in Rod End Bearings and Replacement Guidelines

Rod end bearings are critical components in various mechanical systems, and it’s essential to monitor them for signs of wear or damage. Here are common indicators and guidelines for replacement:

1. Excessive Play or Looseness: If you notice excessive play or looseness in the rod end bearing, it’s a clear sign of wear. This can result in imprecise control and reduced system performance, so replacement is recommended.

2. Unusual Noises: Unusual noises such as knocking, clicking, or squeaking during movement are often indicative of rod end bearing issues. These noises can be a result of worn bearing surfaces or damaged components. Address the problem promptly to prevent further damage.

3. Corrosion or Rust: Exposure to moisture or harsh environmental conditions can lead to corrosion and rust on rod end bearings. Corroded bearings may not move smoothly, impacting system operation. If you observe significant corrosion, consider replacement.

4. Visible Damage: Any visible damage, such as cracks, dents, or deformation of the bearing’s body or components, should be taken seriously. Damaged rod end bearings can fail unexpectedly, leading to safety risks and system malfunctions. Replace them if damage is detected.

5. Reduced Range of Motion: If the rod end bearing restricts the range of motion or does not articulate smoothly, it may be worn or damaged. This can affect the performance of the associated system. Replacement is advisable to restore proper functionality.

6. Increased Friction: A sudden increase in friction during movement can indicate a lack of lubrication, contamination, or damage to the bearing surfaces. Re-greasing and cleaning may help, but if the issue persists, consider replacing the bearing.

7. Maintenance Intervals: Depending on the application, rod end bearings may have recommended maintenance intervals. Follow these guidelines and inspect the bearings during routine maintenance. If wear or damage is detected, replace them as necessary.

8. Safety Concerns: In safety-critical applications, it’s vital to prioritize bearing replacement at the first sign of wear or damage. Failure to do so can result in accidents or system failures with serious consequences.

Regular inspection and maintenance of rod end bearings are essential to ensure the continued reliability and performance of mechanical systems. When any of the above signs are observed, it’s advisable to replace the bearings promptly to prevent further issues and potential safety risks.

rod end bearing

Design Principles and Functions of Rod End Bearings

Rod end bearings, also known as heim joints or rose joints, are essential components in various mechanical applications, where articulation and precise control of movement are required. These bearings are designed with specific principles and functions in mind:

Design Principles:

Rod end bearings consist of a spherical plain bearing, also known as a spherical plain bushing, within a housing. The design principles are as follows:

  • Spherical Plain Bearing: The heart of a rod end bearing is a spherical plain bearing. This bearing allows the inner ring to tilt and rotate in multiple directions. It consists of an inner and outer ring with a sliding layer of material in between, often made from self-lubricating materials.
  • Housing: The spherical plain bearing is housed within a protective casing, typically made of metal or other durable materials. The housing provides structural support and retains the bearing components.
  • Threaded Shank: The outer part of the housing is often shaped as a threaded shank, allowing for easy attachment to various mechanical components, such as linkages or control arms.
  • Lubrication Fittings: Many rod end bearings have provisions for lubrication fittings to ensure smooth articulation and reduce friction.

Functions:

Rod end bearings serve several crucial functions in mechanical systems:

  • Articulation: Rod end bearings provide articulation, enabling components to pivot, swivel, and move in multiple directions. This function is vital in applications requiring flexibility and control over movement.
  • Angular Misalignment Compensation: They can compensate for both static and dynamic angular misalignment. This is particularly useful in situations where components may not align perfectly due to varying factors like vibration or assembly tolerances.
  • Load Transmission: Rod end bearings can transmit static and dynamic loads, making them suitable for applications involving force or load transfer. They are used in machinery and equipment where precise control of loads is essential.
  • Precision Movement: These bearings provide precise control and movement, making them suitable for applications where accurate positioning of mechanical components is critical. This includes industries like aerospace and robotics.
  • Corrosion Resistance: Many rod end bearings are designed with corrosion-resistant materials or coatings, making them suitable for use in harsh environments, such as marine and industrial settings.
  • Durability: Rod end bearings are engineered for durability, allowing them to withstand challenging conditions and heavy-duty use. This ensures their reliability and longevity in demanding applications.
  • Versatility: Rod end bearings are versatile components used across various industries, including automotive, aerospace, industrial machinery, and marine applications. Their adaptability and reliability make them valuable to engineers and designers.

These design principles and functions of rod end bearings make them indispensable in a wide range of mechanical systems where articulation, load-bearing capacity, and precise control are required.

China high quality Durable Rod End Cylindrical Roller Turbocharger Wheel Connecting Rod Housing Linear Steel Spherical Bearing   drive shaft bearingChina high quality Durable Rod End Cylindrical Roller Turbocharger Wheel Connecting Rod Housing Linear Steel Spherical Bearing   drive shaft bearing
editor by CX 2024-04-04

China manufacturer Roller Bearing/S. K. F. Nu318ecp/C3/Cylindrical Roller Bearing/Rolling Bearing/Ball Bearing bearing and race

Product Description

The following are the parameters and usage instructions for bearing model NU318ECP/C3:

1. Parameters:

-Bearing model: NU318ECP/C3

-Bearing type: cylindrical roller bearing

-Inner diameter: 90 mm

-Outer diameter: 190 mm

-Width: 43 mm

-Accuracy level: P0 (ordinary accuracy)

-Internal radial clearance: C3

-Basic rated dynamic load 365 kN

-Basic rated static load 360 kN

-Reference speed 3 800 r/min

-Limit speed 4 500 r/min

2. Instructions for use:

-Installation: Before installing the NU318ECP/C3 bearing, ensure that the dimensions and accuracy of the bearing seat and bearing seat holes meet the requirements. Use appropriate tools and methods to correctly install the bearing into the bearing seat.

-Lubrication: Use appropriate lubricating grease or oil and lubricate according to operating conditions and requirements. Ensure that the bearings maintain good lubrication during operation.

-Maintenance: Regularly check the operation status of bearings, such as noise, vibration, and temperature. Regularly replace lubricants and clean bearings and related components.

-Temperature control: Ensure that the bearing operates within an appropriate temperature range to avoid the impact of excessive temperature on bearing performance. Take appropriate measures to control bearing temperature based on operating conditions and requirements, such as using cooling systems or insulation measures.

-Load: Select an appropriate load based on design requirements and bearing load capacity, and avoid exceeding the rated load capacity of the bearing. If there is impact load or uneven load, appropriate compensation measures or other types of bearings should be considered.

-Attention: Avoid excessive lateral force and vibration on the shaft. Follow the installation, maintenance, and operation guidelines provided by the manufacturer to ensure the correct use and long service life of the bearings.

Please note that the above are only general instructions for use, and the specific usage and installation steps may vary depending on specific applications and devices. It is recommended to refer to the relevant manuals and technical information provided by the manufacturer before using bearings.

Model Basic Dimensions   (mm) Basic Dynamic load rating  (kn) Rated Speed     ( r/min)
Inner Diameter            
  NU 303 17 47 14 28.5 20.4 17 000 20 000
  NU 304 20 52 15 35.5 26 15 000 18 000
  NU 305 25 62 17 46.5 36.5 12 000 15 000
  NU 306 30 72 19 58.5 48 11 000 12 000
  NU 307 35 80 21 75 63 9 500 11 000
  NU 308 40 90 23 93 78 8 000 9 500
  NU 309 45 100 25 112 100 7 500 8 500
  NU 310 50 110 27 127 112 6 700 8 000
  NU 311 55 120 29 156 143 6 000 7 000
  NU 312 60 130 31 173 160 5 600 6 700
  NU 313 65 140 33 212 196 5 300 6 000
  NU 314 70 150 35 236 228 4 800 5 600
  NU 315 75 160 37 280 265 4 500 5 300
  NU 316 80 170 39 300 290 4 300 5 000
  NU 317 85 180 41 340 335 4 000 4 800
  NU 318 90 190 43 365 360 3 800 4 500
  NU 319 95 200 45 390 390 3 600 4 300
  NU 320 ECP 100 215 47 450 440 3 200 3 800
  NU 321 105 225 49 500 500 3 200 3 800
  NU 322 110 240 50 530 540 3 000 3 400
  NU 324 120 260 55 610 620 2 800 3 200
  NU 326 130 280 58 720 750 2 400 3 000

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than Over 200 sets.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 1 years.

4.Are you a factory or a trading company?
We have our own cooperative factory, and our business type is a combination of manufacturing and trading.

5.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

6.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner,  100% after-sales service.

7.Which payment method does your company support?
Do our best to meet customer needs, Can be negotiated.

8.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, we will contact you as soon as possible and provide the detailed information you need.

Contact Angle: 0
Aligning: Aligning Bearing
Separated: Separated
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bushing

Bushing Application, Type and Compression Capability

Bushings are cylindrical bushings used in machinery. It prevents wear of moving parts and is often used as an enclosure. Bushings are also known as plain bearings or sleeve bearings. You may be wondering what these parts do and how they work, but this article aims to answer all your questions. We’ll cover bushing applications, types and compression capabilities so you can choose the right one for your needs.

application

A bushing is a mechanical component that plays an important role in many different fields. In addition to being very practical, it helps reduce noise, vibration, wear and provides anti-corrosion properties. These properties help mechanical equipment in various ways, including making it easier to maintain and reducing its overall structure. The functionality of an enclosure depends on its purpose and environment. This article will discuss some of the most common applications of casing.
For example, in an aircraft, the bushing assembly 16 may be used for the bulkhead isolator 40 . The bushing assembly 16 provides the interfaces and paths required for current flow. In this manner, the sleeve assembly provides a secure, reliable connection between two objects with different electrical charges. They also prevent sparking by increasing the electrical conductivity of the component and reducing its resistivity, thereby minimizing the chance of spark formation.
Another common application for bushings is as a support shaft. Unlike bearings, bushings operate by sliding between two moving surfaces. As a result, they reduce friction and handling stress, reducing overall maintenance costs. Typically, the bushing is made of brass or bronze. The benefits of bushings are similar to those of bearings. They help extend the life of rotating machines by reducing frictional energy loss and wear.
In addition to identifying growth opportunities and minimizing risks, the Bushing Anti-Vibration Mounts Market report provides insights into the dynamics of the industry and its key players. The report covers global market size, applications, growth prospects, challenges and regional forecasts. The detailed section on Bushing Anti-Vibration Mounts industry provides insights on demand and supply along with competitive analysis at regional and country level.

type

There are several types of bushings. Among them, the SF6 insulating sleeve has the simplest structure and is based on composite hollow insulators. It also has several metal shielding cylinders for regulating the electric field within the enclosure and another for grounding the metal shield. In addition to being lightweight, this sleeve is also very durable, but the diameter of its shield electrode is very large, which means special installation and handling procedures are required.
Linear bushings are usually pressed into the bore of the shaft and provide support as the shaft moves in/out. Non-press-fit bushings are held in place by snap rings or pins. For certain applications, engineers often choose bushings over bearings and vice versa. That’s why. Below are some common bushing types. If you need to buy, make sure you know how to tell them apart.
OIP bushings are used for oil-filled cable boxes, and oil-to-oil bushings are used for EHV power transformers. The main components of the OIP enclosure are shown in Figure 7a. If you are considering this type of bushing for your specific application, you need to make sure you understand your specific requirements. You can also consult your local engineering department for more information.
All types of bushings should be tested for IR and capacitance. The test tap should be securely attached to the bushing flange. If damaged bushings are found, replace them immediately. Be sure to keep complete records of the enclosure for routine maintenance and any IR testing. Also, be sure to pay attention to tan d and thermal vision measurements.
bushing

Compressive ability

There are several things to consider when choosing an enclosure. First, the material. There are two main types of bushings: those made of filled Teflon and those made of polyester resin. The former has the highest compressive strength, while the latter has a lower compressive capacity. If you need small amounts, glass-filled nylon bushings are the most common and best option. Glass-filled nylon is an economical material with a compressive strength of 36,000 lbs.
Second, the material used for the enclosure must be able to withstand the load. For example, bronze bushings can cause metal shavings to fall into the papermaking process. CG materials can withstand very high levels of moisture, which can damage bushings that require lubrication. Additionally, these materials can operate for extended periods of time without lubrication. This is particularly advantageous in the paper industry, since the casing operates in a humid environment.
In addition to the material and its composition, other characteristics of the enclosure must also be considered, including its operating temperature. Although frictional heat from moving loads and the temperature of the bushing itself can affect the performance of the bushing, these factors determine its service life. For high temperature applications, the PV of the enclosure should be kept low. On the other hand, plastic bushings are generally less heat resistant than metal bushings. In addition, plastic sleeves have a high rate of thermal expansion. To avoid this, size control is also important.
Low pressure bushings have different requirements. An 800 MVA installation requires a low voltage bushing rated at 14 000 A. The palm assembly of the transformer also features a large central copper cylinder for electrical current. The bushing must withstand this amount of current and must maintain an even distribution of current in the transformer tank. If there is a leak, the bushing must be able to resist the leak so as not to damage the transformer.

cost

The cost of new control arm bushings varies widely. Some parts are cheaper than others, and a new part is only $200. However, if you replace the four control bushings in your car, the cost can exceed $1,200. The cost breakdown for each section is listed below. If you plan to replace all four, the cost of each bushing may range from $200 to $500.
The control arm bushing bears the brunt of the forces generated by the tire and is parallel to the direction of the force. However, over time, these components wear out and need to be replaced. Replacing one control arm bushing costs between $300 and $1,200. However, the cost of replacing each arm bushing depends on your car model and driving habits. The control arm bushings should last about 100,000 miles before needing replacement.
The repair process for control arm bushings is time consuming and expensive. Also, they may need to remove the heat shield or bracket. In either case, the procedure is simple. Stabilizer bar brackets are usually attached with one or two mounting bolts. They can also be secured with nuts or threaded holes. All you need is a wrench to remove them.
The control arm bushings are made of two metal cylinders and a thick rubber bushing. These parts can deteriorate from potholes, off-roading or accidents. Because they are made of rubber, the parts are more expensive than new. Buying used ones can save you money because you don’t need to install them yourself. However, if you do plan on fixing a luxury car yourself, be sure to find one that has a warranty and warranty.
bushing

maintain

To prevent your vehicle from overheating and leaking oil, a properly functioning bushing must be used. If the oil level is too low, you will need to check the mounting bolts to make sure they are properly tightened. Check gasket to ensure proper compression is applied, replace bushing if necessary. You should notify your vehicle manufacturer if your vehicle is immersed in oil. Whenever an oil leak occurs, it is very important to replace the oil-filled bushing.
Another important aspect of bushing maintenance is the detection and correction of partial discharges. Partial discharge is caused by current entering the bushing. Partial discharge can cause tree-like structures, cracks and carbonization in the discharge channel, which can eventually damage the casing. Early detection of these processes is critical to ensuring that your vehicle’s bushings are properly maintained. Identifying and repairing partial discharges is critical to ensuring optimal operation, regardless of the type of pump or motor.
To diagnose casing condition, perform several tests. You can use tan d measurement, which is a powerful tool for detecting the ingress of water and moisture. You can also use power factor measurements to detect localized defects and aging effects. You can also check the oil level by performing an infrared check. After completing these tests, you will be able to determine if there is enough oil in the casing.
If the oil level in the transformer is too low, water and air may leak into the transformer. To avoid this problem, be sure to check the MOG and transformer oil levels. If the silicone is pink, replace it. You should also check the function of the oil pump, fan and control circuits annually. Check the physical condition of the pump and fan and whether they need to be replaced. Clean the transformer bushing with a soft cotton cloth and inspect for cracks.

China manufacturer Roller Bearing/S. K. F. Nu318ecp/C3/Cylindrical Roller Bearing/Rolling Bearing/Ball Bearing   bearing and raceChina manufacturer Roller Bearing/S. K. F. Nu318ecp/C3/Cylindrical Roller Bearing/Rolling Bearing/Ball Bearing   bearing and race
editor by CX 2023-11-21

China Standard Tapered Roller Bearing Manufacturers 67790/20 Tapered Roller Bearing for Rolling Mill with Hot selling

Product Description

Product Name

67790/20

Product category

Tapered roller bearing

Product material

GCR15 bearing steel

Product advantage

Long life. High precision. Low noise. High wear resistance

Application program

Auto parts industry

Customer order protection

Warranty for 1 year

Minimum order quantity

1 piece

Bearing No.

Dimensions(mm) Weight
  d D T kg
645/632 71.438 136.525 41.275 0.146
6461/20 76.2 149.225 54.229 0.285
665/653 85.725 146.05 41.275 0.177
663/653 82.55 146.05 41.275 0.191
683/672 95.25 168.275 41.275 0.246
687/672 101.6 168.275 41.275 0.343
685/672 98.425 168.275 41.275 0.351
68462/712 117.475 180.975 31.75 0.171
HM617049/10 85.725 142.138 42.862 0.219
L68149/10 34.98 59.131 16.764 0.357
JL68145/11-Z 35 60 11.938 0.486
JL69349/10 38 63 17 0.435
L603049/11 45.242 77.788 19.842  
L68149/11 34.98 59.975 16.764 0.17
67048/10 31.75 59.131 16.764  
749/742 85.026 150.089 44.45 0.337
759/752 88.9 161.925 47.625 0.25
780/772 101.6 180.975 47.625 0.309
H715332/11 60.325 136.525 46.038  
H715340/11 65.088 136.525 46.038  
H715343/11 68.262 136.525 46.038  
JLM710949/10 65 105 23  
LM72849/10 22.606 47 15.5  
LM806649/10 53.975 88.9 19.05  

 

 

Products Application

 

Single row tapered roller bearings are designed to accommodate a combination of radial and axial loads and provide low friction.
during operation. The inner ring with roller and cage can be installed separately from the outer ring. These detachable and
interchangeable parts are easy to install, remove and maintain. Rigid bearing applications can be achieved by mounting 1 single. row tapered roller bearing on the other and applying preload.
 

Recommend Products

Company Profile

 

Our Advantages

Certifications

Packaging & Shipping

 

FAQ

1. Where is our factory?
We are based in ZheJiang , China, We are an integrated enterprise of industry and trade start from 2008,sell to Domestic Market(40.00%),South America(10.00%),Eastern Europe(10.00%),North America(5.00%),Southeast Asia (5.00%), Africa(5.00%),Mid East(5.00%),Eastern Asia(5.00%) Central America(5.00%),Northern Europe(5.00%),South, Asia(5.00%). Our brand is DMC.

2. How can we guarantee quality?
Before we mass-produce the goods. Provide the customer with a free sample list, sample confirmation is satisfied with the
customer, we according to the requirements of the customer mass production if the bearing goods received by the customer are not
satisfied, the product can be returned and replaced within a month.
3.What do you get from us?
We can provide all kinds of bearings OEM&ODM customiz
-ed service.
You will get an excellent supplier and excellent bearing price. We will help you revitalize your career and try our best to let
customers earn more money.

Cage: Steel Cage and Nylon Cage
Brand: DMC,OEM
Hardness: 59-62
Samples:
US$ 25.95/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bearing

How to Replace a Bearing

If you want to select a bearing for a specific application, you should know a few basics. This article will give you an overview of ball, angular contact, and sliding-contact bearings. You can choose a bearing according to the application based on the characteristics of its material and preload. If you are not sure how to choose a bearing, try experimenting with it. The next step is to understand the Z-axis, which is the axes along which the bearing moves.

Z axis

When it comes to replacing your Z axis bearing, there are several things you must know. First, you need to make sure that the bearings are seated correctly. Then, you should check the tension and rotation of each one. To ensure that both bearings are equally tensioned, you should flex the Core to the desired angle. This will keep the Z axis perpendicular to the work surface. To do this, first remove the Z axis bearing from its housing and insert it into the Z axis motor plate. Next, insert the flanged bearing into the Z axis motor plate and secure it with two M5x8mm button head cap screws.
Make sure that the bearing plate and the Z Coupler part are flush and have equal spacing. The spacing between the two parts is important, as too much spacing will cause the leadscrew to become tight. The screws should be very loose, with the exception of the ones that engage the nylocks. After installing the bearing, the next step is to start the Z axis. Once this is done, you’ll be able to move it around with a stepper.

Angular contact

Ball bearings are made with angular contacts that result in an angle between the bearing’s races. While the axial load moves in one direction through the bearing, the radial load follows a curved path, tending to separate the races axially. In order to minimize this frictional effect, angular contact bearings are designed with the same contact angle on the inner and outer races. The contact angle must be chosen to match the relative proportions of the axial and radial loads. Generally, a larger contact angle supports a higher axial load, while reducing radial load.
Ball bearings are the most common type of angular contact bearings. Angular contact ball bearings are used in many applications, but their primary purpose is in the spindle of a machine tool. These bearings are suitable for high-speed, precision rotation. Their radial load capacity is proportional to the angular contact angle, so larger contact angles tend to enlarge with speed. Angular contact ball bearings are available in single and double-row configurations.
Angular contact ball bearings are a great choice for applications that involve axial loads and complex shapes. These bearings have raceways on the inner and outer rings and mutual displacement along the axial axis. Their axial load bearing capacity increases as the contact Angle a rises. Angular contact ball bearings can withstand loads up to five times their initial weight! For those who are new to bearings, there are many resources online dedicated to the subject.
Despite their complexity, angular contact ball bearings are highly versatile and can be used in a wide range of applications. Their angular contact enables them to withstand moderate radial and thrust loads. Unlike some other bearings, angular contact ball bearings can be positioned in tandem to reduce friction. They also feature a preload mechanism that removes excess play while the bearing is in use.
Angular contact ball bearings are made with different lubricants and cage materials. Standard cages for angular contact ball bearings correspond to Table 1. Some are machined synthetic resins while others are molded polyamide. These cage materials are used to further enhance the bearing’s axial load capacity. Further, angular contact ball bearings can withstand high speeds and radial loads. Compared to radial contact ball bearings, angular contact ball bearings offer the greatest flexibility.

Ball bearings

bearing
Ball bearings are circular structures with two separate rings. The smaller ring is mounted on a shaft. The inner ring has a groove on the outer diameter that acts as a path for the balls. Both the inner and outer ring surfaces are finished with very high precision and tolerance. The outer ring is the circular structure with the rolling elements. These elements can take many forms. The inner and outer races are generally made of steel or ceramic.
Silicon nitride ceramic balls have good corrosion resistance and lightweight, but are more expensive than aluminum oxide balls. They also exhibit an insulating effect and are self-lubricating. Silicon nitride is also suitable for high-temperature environments. However, this type of material has the disadvantage of wearing out rapidly and is prone to cracking and shattering, as is the case with bearing steel and glass. It’s also less resistant to heat than aluminum oxide, so it’s best to buy aluminum nitride or ceramic ball bearings for applications that are subjected to extremely high temperatures.
Another type of ball bearings is the thrust bearing. It has a special design that accommodates forces in both axial and radial directions. It is also called a bidirectional bearing because its races are side-by-side. Axial ball bearings use a side-by-side design, and axial balls are used when the loads are transmitted through the wheel. However, they have poor axial support and are prone to separating during heavy radial loads.
The basic idea behind ball bearings is to reduce friction. By reducing friction, you’ll be able to transfer more energy, have less erosion, and improve the life of your machine. With today’s advances in technology, ball bearings can perform better than ever before. From iron to steel to plastics, the materials used in bearings have improved dramatically. Bearings may also incorporate an electromagnetic field. So, it’s best to select the right one for your machine.
The life expectancy of ball bearings depends on many factors, including the operating speed, lubrication, and temperature. A single million-rpm ball bearing can handle between one and five million rotations. As long as its surface contact area is as small as possible, it’s likely to be serviceable for at least one million rotations. However, the average lifespan of ball bearings depends on the application and operating conditions. Fortunately, most bearings can handle a million or more rotations before they start showing signs of fatigue.

Sliding-contact bearings

bearing
The basic principle behind sliding-contact bearings is that two surfaces move in contact with one another. This type of bearing works best in situations where the surfaces are made of dissimilar materials. For instance, a steel shaft shouldn’t run in a bronze-lined bore, or vice versa. Instead, one element should be harder than the other, since wear would concentrate in that area. In addition, abrasive particles tend to force themselves into the softer surface, causing a groove to wear in that part.
Sliding-contact bearings have low coefficients of friction and are commonly used in low-speed applications. Unlike ball and roller bearings, sliding contact bearings have to be lubricated on both sides of the contacting surfaces to minimize wear and tear. Sliding-contact bearings generally are made of ceramics, brass, and polymers. Because of their lower friction, they are less accurate than rolling-element bearings.
Sliding-contact bearings are also known as plain or sleeve bearings. They have a sliding motion between their two surfaces, which is reduced by lubrication. This type of bearing is often used in rotary applications and as guide mechanisms. In addition to providing sliding action, sliding-contact bearings are self-lubricating and have high load-carrying capacities. They are typically available in two different types: plain bearings and thrust bearings.
Sliding-contact linear bearing systems consist of a moving structure (called the carriage or slide) and the surfaces on which the two elements slide. The surfaces on which the bearing and journal move are called rails, ways, or guides. A bore hole is a complex geometry, and a minimum oil film thickness h0 is usually used at the line of centers. It is possible to have a sliding-contact bearing in a pillow block.
Because these bearings are porous, they can absorb 15 to 30% of the lubrication oil. This material is commonly used in automobile and machine tools. Many non-metallic materials are used as bearings. One example is rubber, which offers excellent shock absorbency and embeddability. While rubber has poor strength and thermal conductivity, it is commonly used in deep-well pumps and centrifugal pumps. This material has high impact strength, but is not as rigid as steel.

China Standard Tapered Roller Bearing Manufacturers 67790/20 Tapered Roller Bearing for Rolling Mill   with Hot sellingChina Standard Tapered Roller Bearing Manufacturers 67790/20 Tapered Roller Bearing for Rolling Mill   with Hot selling
editor by CX 2023-11-12

China high quality Slewing Bearing Tapered Roller Steel Ball Bearings manufacturer

Product Description

Company Profile

ZheJiang Furlante Bearing Technology Co  is a professional bearing manufacturer with factory and trade. Our company is mainly engaged in deep groove ball bearings,apered roller bearings,External spherical housing bearings,Thrust ball bearings,Linear CZPT bearing system. We have a self-developed team to design and improve the bearings. To meet the needs of different customers. we provide oem and odm,and we have a perfect quality inspection system and professional after-sales service team. we will provide you the best products and services with the most reasonable price.

Product Description

 

Bearing No. Dimensions(mm) Weight Bearing No. Dimensions(mm) Weight
  d D T KG   d D T KG
32004X 20 42 15 0.095 33005 25 47 17 0.129
32005X 25 47 15 0.11 33006 30 55 20 0.201
32006X 30 55 17 0.17 33007 35 62 21 0.25
32007X 35 62 18 0.224 33008 40 68 22 0.306
32008X 40 68 19 0.267 33009 45 75 24 0.398
32009X 45 75 20 0.337 33571 50 80 24 0.433
32571X 50 80 20 0.366 33011 55 90 27 0.651
32011X 55 90 23 0.551 33012 60 95 27 0.691
32012X 60 95 23 0.584 33013 65 100 27 0.732
32013X 65 100 23 0.62 33014 70 110 31 1.07
32014X 70 110 25 0.839 33015 75 115 31 1.12
32015X 75 115 25 0.872 33016 80 125 36 1.63

 

Bearing No. Dimensions(mm) Weight Bearing No. Dimensions(mm) Weight
  d D T kg   d D T kg
35712 15 35 11 0.053 30302 15 42 13 0.098
35713 17 40 13.25 0.079 30303 17 47 15.25 0.129
35714 20 47 15.25 0.126 30304 20 52 16.25 0.165
35715 25 52 16.25 0.154 30305 25 62 18.25 0.263
35716 30 62 17.25 0.231 30306 30 72 20.75 0.387
35717 35 72 18.25 0.331 30307 35 80 22.75 0.515
35718 40 80 19.75 0.422 30308 40 90 25.25 0.747
35719 45 85 20.75 0.474 30309 45 100 27.25 0.984
35710 50 90 21.75 0.529 3571 50 110 29.25 1.28
35711 55 100 22.75 0.713 3571 55 120 31.5 1.63
35712 60 110 23.75 0.904 3571 60 130 33.5 1.99
35713 65 120 24.75 1.13 3571 65 140 36 2.44
35714 70 125 26.25 1.26 3571 70 150 38 2.98
35715 75 130 27.25 1.36 3571 75 160 40 3.57

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

The benefits of rubber bushings and how they work

If you have experienced increased vibration while driving, you know the importance of replacing the control arm bushings. The resulting metal-to-metal contact can cause annoying driving problems and be a threat to your safety. Over time, the control arm bushings begin to wear out, a process that can be exacerbated by harsh driving conditions and environmental factors. Additionally, larger tires that are more susceptible to bushing wear are also prone to increased vibration transfer, especially for vehicles with shorter sidewalls. Additionally, these plus-sized tires, which are designed to fit on larger rims, have a higher risk of transmitting vibrations through the bushings.

rubber

Rubber bushings are rubber tubes that are glued into the inner or outer curve of a cylindrical metal part. The rubber is made of polyurethane and is usually prestressed to avoid breaking during installation. In some cases, the material is also elastic, so it can slide. These properties make rubber bushings an integral part of a vehicle’s suspension system. Here are some benefits of rubber bushings and how they work.
Rubber bushings are used to isolate and reduce vibration caused by the movement of the two pieces of equipment. They are usually placed between two pieces of machinery, such as gears or balls. By preventing vibrations, rubber bushings improve machine function and service life. In addition to improving the overall performance of the machine, the rubber bushing reduces noise and protects the operator from injury. The rubber on the shock absorber also acts as a vibration isolator. It suppresses the energy produced when the two parts of the machine interact. They allow a small amount of movement but minimize vibration.
Both rubber and polyurethane bushings have their advantages and disadvantages. The former is the cheapest, but not as durable as polyurethane. Compared to polyurethane, rubber bushings are a better choice for daily commutes, especially long commutes. Polyurethane bushings provide better steering control and road feel than rubber, but can be more expensive than the former. So how do you choose between polyurethane and rubber bushings?

Polyurethane

Unlike rubber, polyurethane bushings resist high stress environments and normal cycling. This makes them an excellent choice for performance builds. However, there are some disadvantages to using polyurethane bushings. Read on to learn about the advantages and disadvantages of polyurethane bushings in suspension applications. Also, see if a polyurethane bushing is suitable for your vehicle.
Choosing the right bushing for your needs depends entirely on your budget and application. Softer bushings have the lowest performance but may have the lowest NVH. Polyurethane bushings, on the other hand, may be more articulated, but less articulated. Depending on your needs, you can choose a combination of features and tradeoffs. While these are good options for everyday use, for racing and hardcore handling applications, a softer option may be a better choice.
The initial hardness of the polyurethane bushing is higher than that of the rubber bushing. The difference between the two materials is determined by durometer testing. Polyurethane has a higher hardness than rubber because it does not react to load in the same way. The harder the rubber, the less elastic, and the higher the tear. This makes it an excellent choice for bushings in a variety of applications.

hard

Solid bushings replace the standard bushings on the subframe, eliminating axle clutter. New bushings raise the subframe by 0.59″ (15mm), correcting the roll center. Plus, they don’t create cabin noise. So you can install these bushings even when your vehicle is lowered. But you should consider some facts when installing solid casing. Read on to learn more about these casings.
The stiffest bushing material currently available is solid aluminum. This material hardly absorbs vibrations, but it is not recommended for everyday use. Its stiffness makes it ideal for rail vehicles. The aluminum housing is prone to wear and tear and may not be suitable for street use. However, the solid aluminum bushings provide the stiffest feel and chassis feedback. However, if you want the best performance in everyday driving, you should choose a polyurethane bushing. They have lower friction properties and eliminate binding.
Sturdy subframe bushings will provide more driver feedback. Additionally, it will strengthen the rear body, eliminating any movement caused by the subframe. You can see this structural integration on the M3 and M4 models. The benefits of solid subframe bushings are numerous. They will improve rear-end handling without compromising drivability. So if you plan to install a solid subframe bushing, be sure to choose a solid bushing.
bushing

Capacitor classification

In the circuit, there is a high electric field on both sides of the capacitor grading bushing. This is due to their capacitor cores. The dielectric properties of the primary insulating layer have a great influence on the electric field distribution within the bushing. This article discusses the advantages and disadvantages of capacitor grade bushings. This article discusses the advantages and disadvantages of grading bushings for capacitors in DC power systems.
One disadvantage of capacitor grading bushings is that they are not suitable for higher voltages. Capacitor grading bushings are prone to serious heating problems. This may reduce their long-term reliability. The main disadvantage of capacitor grading bushings is that they increase the radial thermal gradient of the main insulation. This can lead to dielectric breakdown.
Capacitor grading bushing adopts cylindrical structure, which can suppress the influence of temperature on electric field distribution. This reduces the coefficient of inhomogeneity of the electric field in the confinement layer. Capacitor grading bushings have a uniform electric field distribution across their primary insulation. Capacitive graded bushings are also more reliable than nonlinear bushings.
Electric field variation is the most important cause of failure. The electrode extension layer can be patterned to control the electric field to avoid flashover or partial discharge of the primary insulating material. This design can be incorporated into capacitor grading bushings to provide better electric fields in high voltage applications. This type of bushing is suitable for a wide range of applications. This article discusses the advantages and disadvantages of capacitor grade bushings.

Metal

When choosing between plastic and metal sleeves, it is important to choose a product that can handle the required load. Plastic bushings tend to deteriorate and often crack under heavy loads, reducing their mechanical strength and service life. Metal bushings, on the other hand, conduct heat more efficiently, preventing any damage to the mating surfaces. Plastic bushings can also be made with lubricating fillers added to a resin matrix.
Plastic bushings have many advantages over metal bushings, including being cheap and versatile. Plastic bushings are now used in many industries because they are inexpensive and quick to install. These plastic products are also self-lubricating and require less maintenance than metals. They are often used in applications where maintenance costs are high or parts are difficult to access. Also, if they are prone to wear and tear, they are easy to replace.
Metal bushings can be made of PTFE, plastic or bronze and are self-lubricating. Graphite plugs are also available for some metal bushings. Their high load capacity and excellent fatigue resistance make them a popular choice for automotive applications. The bi-metallic sintered bronze layer in these products provides excellent load-carrying capacity and good friction properties. The steel backing also helps reduce processing time and avoids the need for additional pre-lubrication.
bushing

plastic

A plastic bushing is a small ball of material that is screwed onto a nut or locknut on a mechanical assembly. Plastic bushings are very durable and have a low coefficient of friction, making them a better choice for durable parts. Since they do not require lubrication, they last longer and cost less than their metal counterparts. Unlike metal bushings, plastic bushings also don’t scratch or attract dirt.
One type of acetal sleeve is called SF-2. It is made of metal alloy, cold rolled steel and bronze spherical powder. A small amount of surface plastic penetrated into the voids of the copper spherical powder. Plastic bushings are available in a variety of colors, depending on the intended application. SF-2 is available in black or grey RAL 7040. Its d1 diameter is sufficient for most applications.
Another acetal sleeve is UHMW-PE. This material is used in the production of bearings and in low load applications. This material can withstand pressures from 500 to 800 PSI and is widely available. It is also self-lubricating and readily available. Due to its high resistance to temperature and chemical agents, it is an excellent choice for low-load industrial applications. If you’re in the market for an alternative to nylon, consider acetal.
Positional tolerances in many automotive components can cause misalignment. Misaligned plastic bushings can negatively impact the driver’s experience. For example, the cross tubes used to mount the seat to the frame are made by a stamping process. The result is a misalignment that can increase torque. Also, the plastic bushing is pushed to one side of the shaft. The increased pressure results in higher friction, which ultimately results in a poor driving experience.
v
China high quality Slewing Bearing Tapered Roller Steel Ball Bearings   manufacturerChina high quality Slewing Bearing Tapered Roller Steel Ball Bearings   manufacturer
editor by CX 2023-06-09

China Good quality China High Performance Taper Roller Bearing 30220 30222 30224 30226 30228 30230 bearing driver

Product Description

Trucks Parts WGBearing for HOWO, Shacman, FAW, Xihu (West Lake) Dis.feng, BeibenSpecification

Product Name Bearing
Part Number 35712
Series Manufacture all kinds of bearings
Package  Standard brand packing & Wooden Case Package & Customized
Suited Truck Sinotruk (Howo), Faw, Donfeng,Faw,Beiben
Delivery Time Within 3 working days after payment
Port Any China Port.
Payment Terms  T/T, L/C, Western Union

FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in neutral carton and wooden case. We also can pack the goods according to your instruction including out package and kinds of labels. 

Q2. How about your delivery time?
A: Generally, it will take 5 to 7 working days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q3.What is your terms of payment?
A: Usually do T/T, L/C or Western Union, 
T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q4. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings.

Q5. Do you test all your goods before delivery?
A: Yes, but you will be always welcome to our company to inspect the goods before delivery

Q6. How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
HangZhou CZPT International Trading Co., Ltd. is a professional, modern and comprehensive enterprise integrating the assembly, wholesales as well as the foreign trade exporting heavy-duty trucks (especially CZPT )and truck all kinds of accessories, construction machinery parts, steels as well as construction materials for many years.
Our main products: 
1). Heavy duty truck accessories: CZPT (Howo, Steyr, Sitrak, Hoyun, Hoka, A7, T7H and so on), Shacman(Delong), Dofeng, FAW, Beiben, Weichai, Yuchai, CZPT Engine parts.
2). Construction Machinery: Shantui, LiuGong, SDLG, LongKing and so on.
 Our company always adhere to the purpose of integrity, the life of quality, the leading of services as our business principle.
We warmly welcome customers and friends at home and abroad to visit and guide. CZPT people sincerely look forward to cooperate with you and create a wonderful future !

 

Type: HOWO Bearing
Material: Chrome Steel
Tolerance: P4
Certification: ISO9001
Clearance: C2
ABS: With ABS
Customization:
Available

|

Customized Request

bearing

Types of Ball Bearings

In their most basic form, Ball Bearings have one common feature – they are made of steel. The majority of these bearings are made of 52100 steel, which has one percent chromium and one percent carbon. The steel can be hardened by heat trea
tment. 440C stainless steel is used for rusting problems. A cage around the ball balls is traditionally made from thin steel. However, some bearings use molded plastic cages to save money and friction.

Single-row designs

Steel linear translation stages often use single-row designs for ball bearings. These types of bearings provide smooth linear travel and can withstand high loads. The material steel has a high modulus of elasticity and a high stiffness, as well as a lower thermal expansion than aluminum. For these reasons, steel is the material of choice for a ball bearing in a typical user environment. Single-row designs for ball bearings are also suitable for applications in humid or corrosive environments.
Single-row designs for ball bearings are available in a variety of sizes and are axially adjustable. They have a high radial capacity, but require relatively little space. Single-row deep groove ball bearings with snap rings are STN 02 4605 or R47, respectively. Bearings with snap rings are identified by a suffix such as NR. They may not have seals or shields installed.
These single-row angular contact ball bearings are capable of supporting axial and radial loads. In a two-raceway arrangement, the radial load on bearing A causes a radial load to act on bearing B. Both axial and radial forces are transmitted between single-row angular contact ball bearings, and the resulting internal force must be taken into account to calculate equivalent dynamic bearing loads P.
Single-row deep groove ball bearings are the most common type of ball bearings. These bearings are designed with only one row of rolling elements. The single-row design is simple and durable, which makes it ideal for high-speed applications. Single-row designs for ball bearings are also available in various bore sizes. They can also come in a variety of shapes and are non-separable. If you need a high-speed bearing, you may want to opt for a double-row design.
In addition to single-row designs for ball bearings, you can choose ceramic or steel ball bearings. Ceramic balls are considerably harder than steel balls, but they are not as hard as steel. Hence, ceramic bearings are stiffer than steel ball bearings, resulting in increased stress on the outer race groove and lower load capacity. This is a great benefit for those who need the bearings to be lightweight and strong.
The difference between single-row and double-row designs is in the way that the inner and outer ring are installed. A single-row design places the inner ring in an eccentric position relative to the outer ring. The two rings are in contact at one point, which causes a large gap in the bearing. The balls are then inserted through the gap. As a result, the balls are evenly distributed throughout the bearing, which forces the inner and outer rings to become concentric.
Deep-groove ball bearings are one of the most popular types of ball bearings. They are available in different designs, including snap-ring, seal and shield arrangements. The race diameter of a deep-groove ball bearing is close to the ball’s diameter. These types of bearings are suited for heavy loads, and their axial and radial support are excellent. Their main drawback is that the contact angle cannot be adjusted to accommodate a wide range of relative loads.
bearing

Ceramic hybrid ball bearings

Hybrid ball bearings with ceramic balls have numerous advantages. They feature improved kinematic behavior and require less lubrication. Consequently, they can reduce operating costs. Additionally, their low thermal expansion coefficient allows for smaller changes in contact angle and preload variations, and they can retain tolerances. Furthermore, ceramic hybrid ball bearings have significantly increased life spans compared to conventional steel-steel ball bearings, with up to 10 times the lifespan.
Although ceramic bearings can be used in automotive applications, many people believe that they’re a poor choice for bicycle hubs. They don’t reduce weight and only work well in high-rpm environments. As a result, many cyclists don’t even bother with ceramic-based bearings. However, both Paul Lew and Alan are of the opinion that ceramic bearings are best suited for industrial or medical equipment applications. Furthermore, Paul and Alan believe that they are ideal for high-altitude drone motors.
Another advantage of ceramic hybrid ball bearings is that they use less friction than conventional steel-based balls. They are also more durable, requiring less lubrication than steel-based bearings. Furthermore, the lower friction and rolling resistance associated with ceramic-based ball bearings means that they can last ten times longer than steel-based bearings. A ceramic-based hybrid ball bearing can be used for applications where speed and lubrication are critical.
Ceramic hybrid ball bearings feature both steel and silicon nitride balls. Silicon nitride balls have 50% more modulus of elasticity than steel balls and can improve accuracy and precision. Ceramic balls also have a smoother surface finish than steel balls, which reduces vibration and spindle deflection. These benefits result in increased speed and improved production quality. In addition to this, ceramic balls can also reduce the operating temperature, enhancing the work environment.
Hybrid bearings are a popular alternative to steel bearings. They have some benefits over traditional steel bearings, and are becoming a popular choice for engineered applications. Hybrid bearings are ideal for high speed machines. The material used to manufacture ceramic balls is a high-quality alloy, and is comparatively inexpensive. But you must understand that lubrication is still necessary for hybrid bearings. If you are not careful, you may end up wasting money.
These ball bearings can be used in many industries and applications, and they are widely compatible with most metals. The main advantage of hybrid ball bearings is that they are very durable. While steel balls tend to corrode and wear out, ceramic ball bearings can withstand these conditions while minimizing maintenance and replacement costs. The benefits of hybrid ball bearings are clear. So, consider switching to these newer types of ball bearings.
bearing

Self-aligning ball bearings

Self-aligning ball bearings are a good choice for many applications. They are a great alternative to traditional ball bearings, and they are ideal for rotating applications in which the shaft must move in several directions. They are also ideal for use in rotating parts where a tight tolerance is necessary. You can choose between two types: plain and flex shaft. Read on to find out which one will suit your needs.
Self-aligning ball bearings are designed with a higher axial load carrying capacity than single-row radial deep groove ball bearings. The amount of axial load carrying capacity is dependent upon the pressure angle. These bearings have a hollow raceway in the outer ring that allows the inner ring to pivot without friction. They are often used for high-speed applications. Because of their design, they are highly accurate.
Self-aligning ball bearings are radial bearings that feature two rows of balls in a spherical outer ring. They also feature two deep uninterrupted raceway grooves in the inner ring. Their unique features make them an excellent choice for applications where shaft deflection is a significant factor. Despite their small size, they have a high level of precision and can withstand heavy loads.
Self-aligning ball bearings can compensate for misalignment in shaft applications. The inner ring and ball assembly are positioned inside an outer ring containing a curved raceway. This spherical design allows the balls and cage to deflect and re-align around the bearing center. These bearings are also ideal for applications where shaft deflection is significant, such as in simple woodworking machinery.
Another type of self-aligning ball bearing uses a common concave outer race. Both balls and outer races automatically compensate for angular misalignment caused by machining, assembly, and deflections. Compared to spherical rollers, they have lower frictional losses than their spherical counterparts. Self-alignment ball bearings also have lower vibration levels compared to other types of bearings.
Self-aligning ball bearings operate in misaligned applications because their spherical outer raceway can accommodate misalignment. This design allows them to work in applications where shaft deflection or housing deformation is common. They are therefore more suitable for low to medium-sized loads. The only real drawback to self-aligning ball bearings is their price. If you need to purchase a self-aligning ball bearing for your next project, you can expect to pay around $1500.

China Good quality China High Performance Taper Roller Bearing 30220 30222 30224 30226 30228 30230   bearing driverChina Good quality China High Performance Taper Roller Bearing 30220 30222 30224 30226 30228 30230   bearing driver
editor by CX 2023-06-06

China Hot selling Needle Roller Bearings for Connecting Rod deep groove ball bearing

Product Description

Company profile:
Our company offers variety of products which can meet your multifarious demands. We adhere to the management principles of “quality first, customer first and credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers. Our company is sincerely willing to cooperate with enterprises from all over the world in order to realize a CZPT situation since the trend of economic globalization has developed with anirresistible force.

Needle roller bearings have high load-carrying capacity and are suitable for support structures with limited mounting dimensions.

Bearing type Internal Diameter Outer Diameter Width Bearing type Internal Diameter Outer Diameter Width
d D B d D B
(mm) (mm) (mm) (mm) (mm) (mm)
BK0408 4 8 8 K10X14X13 10 14 13
BK0509 5 9 9 K10X15X15 10 15 15
BK0609 6 10 9 K10X16X12 10 16 12
BK0709 7 11 9 K12X15X10 12 15 10
BK0808 8 12 8 K12X15X13 12 15 13
BK571 8 12 10 K12X16X10 12 16 10
BK571 9 13 10 K12X16X13 12 16 13
BK571 9 13 12 K12X18X12 12 18 12
BK1571 10 14 10 K14X18X10 14 18 10
BK1012 10 14 12 K14X18X13 14 18 13
BK1210 12 16 10 K14X18X15 14 18 15
BK1412 14 20 12 K14X18X17 14 18 17
BK1416 14 20 16 K14X20X12 14 20 12
BK1512 15 21 12 K15X19X10 15 19 10
BK1516 15 21 16 K15X19X13 15 19 13
BK1612 16 22 12 K15X20X13 15 20 13
BK1616 16 22 16 K16X20X10 16 20 10
BK1712 17 23 12 K16X20X13 16 20 13
BK1812 18 24 12 K16X20X17 16 20 17
BK1816 18 24 16 K16X22X12 16 22 12
BK2012 20 26 12 K16X22X17 16 22 17
BK2016 20 26 16 K17X21X10 17 21 10
BK2212 22 28 12 K17X21X13 17 21 13
BK2216 22 28 16 K17X21X15 17 21 15
BK2512 25 32 12 K17X21X17 17 21 17
BK2516 25 32 16 K17X23X15 17 23 15
BK2520 25 32 20 K18X22X10 18 22 10
BK2816 28 35 16 K18X22X13 18 22 13
BK2820 28 35 20 K18X22X17 18 22 17
BK3012 30 37 12 K18X23X20 18 23 20
BK3016 30 37 16 K18X24X12 18 24 12
BK3571 30 37 20 K18X24X17 18 24 17
BK3512 35 42 12 K18X24X20 18 24 20
BK3520 35 42 20 K20X24X10 20 24 10
BK4012 40 47 12 K20X24X13 20 24 13
BK4571 40 47 20 K20X24X17 20 24 17
BK4520 45 52 20 K20X26X12 20 26 12
BK5571 50 58 20 K20X26X17 20 26 17
BK5520 55 63 20 K20X26X20 20 26 20
BK6571 60 68 20 K22X26X10 22 26 10
HK0408 4 8 8 K22X26X13 22 26 13
HK0509 5 9 9 K22X26X17 22 26 17
HK0608 6 10 8 K25X29X10 25 29 10
HK0609 6 10 9 K25X29X13 25 29 13

Bearing type Internal Diameter Outer Diameter Width Bearing type Internal Diameter Outer Diameter Width
d D B d D B
(mm) (mm) (mm) (mm) (mm) (mm)
HK0709 7 11 9 K25X29X17 25 29 17
HK0808 8 12 8 K25X30X13 25 30 13
HK571 8 12 10 K25X30X17 25 30 17
HK571 9 13 10 K25X30X20 25 30 20
HK571 9 13 12 K25X31X17 25 31 17
HK1571 10 14 10 K25X32X16 25 32 16
HK1012 10 14 12 K28X33X13 28 33 13
HK1210 12 16 10 K28X33X17 28 33 17
HK1412 14 20 12 K28X33X27 28 33 27
HK1416 14 20 16 K28X34X17 28 34 17
HK1512 15 21 12 K28X35X16 28 35 16
HK1516 15 21 16 K30X35X13 30 35 13
HK1612 16 22 12 K30X35X17 30 35 17
HK1616 16 22 16 K30X35X27 30 35 27
HK1712 17 23 12 K30X37X16 30 37 16
HK1812 18 24 12 K30X37X20 30 37 20
HK1816 18 24 16 K32X37X13 32 37 13
HK2571 20 26 10 K32X37X17 32 37 17
HK2012 20 26 12 K32X37X27 32 37 27
HK2016 20 26 16 K32X38X20 32 38 20
HK2210 22 28 10 K32X39X20 32 39 20
HK2212 22 28 12 K35X40X13 35 40 13
HK2216 22 28 16 K35X40X17 35 40 17
HK2512 25 32 12 K35X40X27 35 40 27
HK2516 25 32 16 K35X42X16 35 42 16
HK2520 25 32 20 K35X42X20 35 42 20
HK2816 28 35 16 K38X46X20 38 46 20
HK2820 28 35 20 K40X45X13 40 45 13
HK3012 30 37 12 K40X45X17 40 45 17
HK3016 30 37 16 K40X45X27 40 45 27
HK3571 30 37 20 K40X46X17 40 46 17
HK3512 35 42 12 K40X47X20 40 47 20
HK3520 35 42 20 K40X48X20 40 48 20
HK4012 40 47 12 K40X48X25 40 48 25
HK4571 40 47 20 K42X47X13 42 47 13
HK4512 45 52 12 K42X47X27 42 47 27
HK4520 45 52 20 K45X50X17 45 50 17
HK5571 50 58 20 K45X50X27 45 50 27
HK5520 55 63 20 K45X53X20 45 53 20
HK6571 60 68 20 K45X53X25 45 53 25
K100X108X30 100 108 30 K48X53X17 48 53 17
K10X13X10 10 13 10 K50X55X20 50 55 20
K10X13X13 10 13 13 K50X58X20 50 58 20
K10X14X10 10 14 10 K50X58X25 50 58 25

Cage: With Cage
Rows Number: Double
Load Direction: Radial Bearing
Style: Without Outer Ring, With Outer Ring, Without Inner Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

Bushing Application, Type and Compression Capability

Bushings are cylindrical bushings used in machinery. It prevents wear of moving parts and is often used as an enclosure. Bushings are also known as plain bearings or sleeve bearings. You may be wondering what these parts do and how they work, but this article aims to answer all your questions. We’ll cover bushing applications, types and compression capabilities so you can choose the right one for your needs.

application

A bushing is a mechanical component that plays an important role in many different fields. In addition to being very practical, it helps reduce noise, vibration, wear and provides anti-corrosion properties. These properties help mechanical equipment in various ways, including making it easier to maintain and reducing its overall structure. The functionality of an enclosure depends on its purpose and environment. This article will discuss some of the most common applications of casing.
For example, in an aircraft, the bushing assembly 16 may be used for the bulkhead isolator 40 . The bushing assembly 16 provides the interfaces and paths required for current flow. In this manner, the sleeve assembly provides a secure, reliable connection between two objects with different electrical charges. They also prevent sparking by increasing the electrical conductivity of the component and reducing its resistivity, thereby minimizing the chance of spark formation.
Another common application for bushings is as a support shaft. Unlike bearings, bushings operate by sliding between two moving surfaces. As a result, they reduce friction and handling stress, reducing overall maintenance costs. Typically, the bushing is made of brass or bronze. The benefits of bushings are similar to those of bearings. They help extend the life of rotating machines by reducing frictional energy loss and wear.
In addition to identifying growth opportunities and minimizing risks, the Bushing Anti-Vibration Mounts Market report provides insights into the dynamics of the industry and its key players. The report covers global market size, applications, growth prospects, challenges and regional forecasts. The detailed section on Bushing Anti-Vibration Mounts industry provides insights on demand and supply along with competitive analysis at regional and country level.

type

There are several types of bushings. Among them, the SF6 insulating sleeve has the simplest structure and is based on composite hollow insulators. It also has several metal shielding cylinders for regulating the electric field within the enclosure and another for grounding the metal shield. In addition to being lightweight, this sleeve is also very durable, but the diameter of its shield electrode is very large, which means special installation and handling procedures are required.
Linear bushings are usually pressed into the bore of the shaft and provide support as the shaft moves in/out. Non-press-fit bushings are held in place by snap rings or pins. For certain applications, engineers often choose bushings over bearings and vice versa. That’s why. Below are some common bushing types. If you need to buy, make sure you know how to tell them apart.
OIP bushings are used for oil-filled cable boxes, and oil-to-oil bushings are used for EHV power transformers. The main components of the OIP enclosure are shown in Figure 7a. If you are considering this type of bushing for your specific application, you need to make sure you understand your specific requirements. You can also consult your local engineering department for more information.
All types of bushings should be tested for IR and capacitance. The test tap should be securely attached to the bushing flange. If damaged bushings are found, replace them immediately. Be sure to keep complete records of the enclosure for routine maintenance and any IR testing. Also, be sure to pay attention to tan d and thermal vision measurements.
bushing

Compressive ability

There are several things to consider when choosing an enclosure. First, the material. There are two main types of bushings: those made of filled Teflon and those made of polyester resin. The former has the highest compressive strength, while the latter has a lower compressive capacity. If you need small amounts, glass-filled nylon bushings are the most common and best option. Glass-filled nylon is an economical material with a compressive strength of 36,000 lbs.
Second, the material used for the enclosure must be able to withstand the load. For example, bronze bushings can cause metal shavings to fall into the papermaking process. CG materials can withstand very high levels of moisture, which can damage bushings that require lubrication. Additionally, these materials can operate for extended periods of time without lubrication. This is particularly advantageous in the paper industry, since the casing operates in a humid environment.
In addition to the material and its composition, other characteristics of the enclosure must also be considered, including its operating temperature. Although frictional heat from moving loads and the temperature of the bushing itself can affect the performance of the bushing, these factors determine its service life. For high temperature applications, the PV of the enclosure should be kept low. On the other hand, plastic bushings are generally less heat resistant than metal bushings. In addition, plastic sleeves have a high rate of thermal expansion. To avoid this, size control is also important.
Low pressure bushings have different requirements. An 800 MVA installation requires a low voltage bushing rated at 14 000 A. The palm assembly of the transformer also features a large central copper cylinder for electrical current. The bushing must withstand this amount of current and must maintain an even distribution of current in the transformer tank. If there is a leak, the bushing must be able to resist the leak so as not to damage the transformer.

cost

The cost of new control arm bushings varies widely. Some parts are cheaper than others, and a new part is only $200. However, if you replace the four control bushings in your car, the cost can exceed $1,200. The cost breakdown for each section is listed below. If you plan to replace all four, the cost of each bushing may range from $200 to $500.
The control arm bushing bears the brunt of the forces generated by the tire and is parallel to the direction of the force. However, over time, these components wear out and need to be replaced. Replacing one control arm bushing costs between $300 and $1,200. However, the cost of replacing each arm bushing depends on your car model and driving habits. The control arm bushings should last about 100,000 miles before needing replacement.
The repair process for control arm bushings is time consuming and expensive. Also, they may need to remove the heat shield or bracket. In either case, the procedure is simple. Stabilizer bar brackets are usually attached with one or two mounting bolts. They can also be secured with nuts or threaded holes. All you need is a wrench to remove them.
The control arm bushings are made of two metal cylinders and a thick rubber bushing. These parts can deteriorate from potholes, off-roading or accidents. Because they are made of rubber, the parts are more expensive than new. Buying used ones can save you money because you don’t need to install them yourself. However, if you do plan on fixing a luxury car yourself, be sure to find one that has a warranty and warranty.
bushing

maintain

To prevent your vehicle from overheating and leaking oil, a properly functioning bushing must be used. If the oil level is too low, you will need to check the mounting bolts to make sure they are properly tightened. Check gasket to ensure proper compression is applied, replace bushing if necessary. You should notify your vehicle manufacturer if your vehicle is immersed in oil. Whenever an oil leak occurs, it is very important to replace the oil-filled bushing.
Another important aspect of bushing maintenance is the detection and correction of partial discharges. Partial discharge is caused by current entering the bushing. Partial discharge can cause tree-like structures, cracks and carbonization in the discharge channel, which can eventually damage the casing. Early detection of these processes is critical to ensuring that your vehicle’s bushings are properly maintained. Identifying and repairing partial discharges is critical to ensuring optimal operation, regardless of the type of pump or motor.
To diagnose casing condition, perform several tests. You can use tan d measurement, which is a powerful tool for detecting the ingress of water and moisture. You can also use power factor measurements to detect localized defects and aging effects. You can also check the oil level by performing an infrared check. After completing these tests, you will be able to determine if there is enough oil in the casing.
If the oil level in the transformer is too low, water and air may leak into the transformer. To avoid this problem, be sure to check the MOG and transformer oil levels. If the silicone is pink, replace it. You should also check the function of the oil pump, fan and control circuits annually. Check the physical condition of the pump and fan and whether they need to be replaced. Clean the transformer bushing with a soft cotton cloth and inspect for cracks.

China Hot selling Needle Roller Bearings for Connecting Rod   deep groove ball bearingChina Hot selling Needle Roller Bearings for Connecting Rod   deep groove ball bearing
editor by CX 2023-06-01

China Custom as Washers Assembly Axial Thrust Roller Needle Bearing deep groove ball bearing

Product Description

Company Profile

ZheJiang Furlante Bearing Technology Co  is a professional bearing manufacturer with factory and trade. Our company is mainly engaged in deep groove ball bearings,apered roller bearings,External spherical housing bearings,Thrust ball bearings,Linear CZPT bearing system. We have a self-developed team to design and improve the bearings. To meet the needs of different customers. we provide oem and odm,and we have a perfect quality inspection system and professional after-sales service team. we will provide you the best products and services with the most reasonable price. 

Product Description

Needle Roller and Cage Assemblies

Shaft Bearing No. Boundary Dimensions(mm) Basic Load Rating(N) Limiting Speed
Fw Ew Bc Cr Cor Oil(RPM)
3 K3X5X7TN 3 5 7 1540 1290 50000
K3X5X9TN 3 5 9 1710 1480 48000
K3X6X7TN 3 6 7 1430 970 47000
4 K4X7X7TN 4 7 7 2330 1840 43000
K4X7X10TN 4 7 10 2350 1920 39000
5 K5X8X8TN 5 8 8 2300 1880 37000
K5X8X10TN 5 8 10 2800 2450 37000
6 K6X9X8TN 6 9 8 2500 2240 35000
K6X9X10TN 6 9 10 3300 3100 35000
K6X10X13TN 6 10 13 3500 2800 33000
7 K7X10X8TN 7 10 8 2750 2550 32000
K7X10X10TN 7 10 10 3350 3400 32000
8 K8X11X8TN 8 11 8 3000 2900 30000
K8X11X10TN 8 11 10 3830 3950 30000
K8X11X13TN 8 11 13 5000 5700 30000
K8X12X10TN 8 12 10 4900 4600 30000
9 K9X12X10TN 9 12 10 4200 4700 30000
K9X12X13TN 9 12 13 5500 6700 30000
10 K10X13X10TN 10 13 10 4500 5250 27000
K10X13X13TN 10 13 13 6000 7600 27000
K10X13X16TN 10 13 16 6300 7800 27000
K10X14X10TN 10 14 10 7000 7900 27000
K10X14X13TN 10 14 13 8000 9100 26000
K10X16X12TN 10 16 12 7000 9300 27000
12 K12X15X9TN 12 15 9 4120 5210 25000
K12X15X10TN 12 15 10 4320 5730 25000
K12X15X13TN 12 15 13 6000 8100 25000
K12X16X8TN 12 16 8 1200 4700 25000
K12X16X10TN 12 16 10 6000 6900 25000
K12X16X13TN 12 16 13 7900 9200 25000
K12X17X13TN 12 17 13 9300 10000 24000
K12X18X12TN 12 18 12 9800 8000 24000
K12X15X20TN 12 15 20 8200 12000 25000
14 K14X17X10 14 17 10 5100 6800 23000
K14X17X17 14 17 17 9300 14000 23000
K14X18X10 14 18 10 6800 8300 23000
K14X18X13 14 18 13 8100 9800 23000
K14X18X14 14 18 14 9200 12000 23000
K14X18X15 14 18 15 10000 13000 23000
K14X18X17 14 18 17 10500 13900 23000
K14X20X12 14 20 12 9900 10500 22000
15 K15X18X14 15 18 14 7500 11000 23000
K15X18X17 15 18 17 9600 15900 23000
K15X19X10 15 19 10 7200 9000 22000
K15X19X13 15 19 13 8300 9800 22000
K15X19X17 15 19 17 10300 15000 22000
K15X19X24 ZW 15 19 24 12800 25710 22000
K15X22X13 15 22 13 9700 11000 22000
K15X22X12 15 22 12 10000 13000 22000
K15X21X15 15 21 15 13800 16000 22000
K15X21X21 15 21 21 18000 24000 22000
16 K16X20X10 16 20 10 7600 9700 22000
K16X20X13 16 20 13 8700 11300 22000
K16X20X17 16 20 17 11200 16300 22000
K16X21X10 16 21 10 9000 12000 22000
K16X22X12 16 22 12 11000 12000 21000
K16X22X13 16 22 13 12000 13400 21000
K16X22X16 16 22 16 14300 17000 21000
K16X22X20 16 22 20 18000 22300 21000
K16X23X14 16 23 14 19000 21000 19000
K16X24X20 16 24 20 21100 23000 20000
17 K17X21X10 17 21 10 7900 15710 21000
K17X21X13 17 21 13 10000 14100 21000
K17X21X17 17 21 17 12000 17400 21000
K17X23X14 17 23 14 11000 15000 21000
18 K18X22X10 18 22 10 8200 9900 20000
K18X22X13 18 22 13 9000 12100 20000
K18X22X17 18 22 17 11900 17600 20000
K18X24X12 18 24 12 11200 12900 20000
K18X24X13 18 24 13 12900 14900 20000
K18X24X13.5 18 24 13.5 12900 14900 20000
K18X24X20 18 24 20 20000 26500 20000
K18X25X14 18 25 14 16500 18800 20000
K18X25X22 18 25 22 22900 28400 20000
K18X26X14 18 26 14 18000 20000 18000
K18X28X16 18 28 16 19000 18400 19000
19 K19X23X13 19 23 13 9300 13000 20000
K19X23X17 19 23 17 12000 18600 20000
20 K20X24X10 20 24 10 8700 12100 19000
K20X24X12 20 24 12 9600 13800 19000
K20X24X13 20 24 13 9600 13800 19000
K20X24X17 20 24 17 12400 20000 19000
K20X26X12 20 26 12 13100 15700 19000
K20X26X16 20 26 16 18000 25000 18500
K20X26X17 20 26 17 18700 25500 19000
K20X26X20 20 26 20 20600 28500 19000
K20X28X20 20 28 20 23400 28000 18000
K20X28X25 20 28 25 30000 28500 18000
K20X30X30 20 30 30 35000 41000 18000
21 K21X25X13 21 25 13 9600 14500 19000
K21X25X17 21 25 17 12800 21000 19000
22 K22X26X10 22 26 10 8700 12900 18000
K22X26X13 22 26 13 10000 15400 18000
K22X26X17 22 26 17 13100 22100 18000
K22X27X13 22 27 13 14000 23000 18000
K22X28X17 22 28 17 19000 26500 18000
K22X28X23 22 28 23 20000 27000 19000
K22X29X16 22 29 16 19500 25000 17000
K22X30X15TN 22 30 15 19600 22900 17000
K22X30X20 22 30 20 21000 23500 18900
K22X32X24 22 32 24 33500 39500 16000
23 K23X35X16TN 23 35 16 24000 23400 15000
24 K24X28X10 24 28 10 9400 14300 17000
K24X28X13 24 28 13 10500 17000 17000
K24X28X17 24 28 17 14000 24500 17000
K24X29X13 24 29 13 13100 19100 16000
K24X30X17 24 30 17 19000 27000 16000
K24X30X31 24 30 31 27000 43000 16000
25 K25X29X10 25 29 10 9700 14900 16000
K25X29X13 25 29 13 10800 17900 16000
K25X29X17 25 29 17 14500 25500 16000
K25X30X13 25 30 13 14100 21300 16000
K25X30X20 25 30 20 21100 28000 16000
K25X30X25 25 30 25 21700 40400 15000
K25X30X26 25 30 26 25710 26500 15000
K25X31X17 25 31 17 19000 28000 16000
K25X31X21 25 31 21 24100 37500 16000
K25X32X16 25 32 16 20500 27500 15000
K25X33X20 25 33 20 28000 37500 15000
K25X33X24 25 33 24 33900 46500 15000
K25X34X18 25 34 18 48000 67000 15000
K25X35X30 25 35 30 46500 61500 14000
K25X30X26 ZW 25 30 26 21000 35000 14000
26 K26X30X10 26 30 10 9500 15500 16000
K26X30X13 26 30 13 11100 18700 16000
K26X30X17 26 30 17 14700 27000 16000
K26X31X13 26 31 13 12400 18400 15000
K26X30X22 26 30 22 15200 28000 16000
27 K27X32X17 27 32 27 16000 34000 17000
28 K28X32X16.5 28 32 16.5 15000 32400 14000
K28X32X17 28 32 17 15000 32400 14000
K28X33X13 28 33 13 14800 23600 14000
K28X33X17 28 33 17 19100 33000 14000
K28X33X27 TN 28 33 27 22800 40500 14000
K28X34X17 28 34 17 21300 35000 14000
K28X35X16 28 35 16 21000 29000 14000
K28X35X18 28 35 18 23500 33500 14000
K28X35X20 28 35 20 24000 34000 14000
K28X35X27 28 35 27 34500 54500 14000
K28X36X16 28 36 16 34000 47000 11000
K28X40X18 28 40 18 33000 36500 12000
K28X40X25 28 40 25 45000 54500 12000
30 K30X33X10 30 33 10      
K30X34X13 30 34 13 11800 21200 13000
K30X35X13 30 35 13 15100 25000 13000
K30X35X17 30 35 17 19100 33500 13000
K30X35X26 30 35 26      
K30X35X27 30 35 27 30000 58500 13000
K30X37X16 30 37 16 22500 33000 13000
K30X38X25 30 38 25 16000 390000 13000
K30X39X21 30 39 21      
K30X40X18 30 40 18 31500 39500 12000
K30X40X27 30 40 27      
K30X40X30 30 40 30 48500 68500 13000
K30X35X26 30 35 26 23500 43500 12000
K30X42X44.1 30 42 44.1      
32 K32X37X13 32 37 13 15000 25000 12000
K32X37X17 32 37 17 19400 35000 12000
K32X37X27 32 37 27 29500 59500 12000
K32X37X28 TN 32 37 28 23100 43000 12000
K32X38X16 32 38 16 21000 34000 12000
K32X38X20 32 38 20 26000 44500 12000
K32X38X26 TN 32 38 26 27000 46500 12000
K32X39X16 32 39 16 23500 35000 12000
K32X39X18 32 39 18 26000 40500 12000
K32X40X20 32 40 20 37000 40500 12000
K32X40X36 32 40 36 53500 91500 12000
K32X46X32 32 46 32 65500 82500 11000
K32X40X42 TN 32 40 42 49500 83500 12000
35 K35X40X13 35 40 13 15800 27500 11000
K35X40X17 35 40 17 20300 38000 11000
K35X40X25 35 40 25 29000 59500 11000
K35X40X27 TN 35 40 27 24500 48000 11000
K35X40X27 35 40 27 27800 62100 11000
K35X40X30 35 40 30 25000 49500 11000
K35X42X16 35 42 16 23900 37000 11000
K35X42X18 35 42 18 27000 42500 11000
K35X42X30 35 42 30 38500 67500 11000
K35X43X18 35 43 18 28000 41500 11000
K35X45X20 35 45 20 36500 49500 10000
K35X45X30 35 45 30 52500 78500 10000
K35X45X49 35 45 49 81500 13400 10000
K35X40X30 ZW 35 40 30 31500 65500 11000
K35X42X20 ZW 35 42 20 29500 48500 11000
36 K36X41X30 36 41 30 23000 43000 11000
K36X42X16 36 42 16 24000 42000 11000
37 K37X42X17 37 42 17 21900 42500 10000
K37X42X27 37 42 27 31500 67500 10000
K37X45X26 37 45 26 43500 73500 10000
38 K38X43X17 38 43 17 20000 38000 10000
K38X43X27 38 43 27 31000 67500 10000
K38X46X20 38 46 20 35000 56500 10000
K38X46X32 38 46 32 54500 98500 10000
39 K39X44X24 39 44 24 28000 58500 10000
K39X44X26 ZW 39 44 26 27000 55500 10000
40 K40X44X13 40 44 13 13500 28000 10000
K40X45X13 40 45 13 17100 32000 10000
K40X45X17 40 45 17 20900 41000 10000
K40X45X21 40 45 21 24400 49500 10000
K40X45X27 40 45 27 32500 72500 10000
K40X46X17 40 46 17 24500 44500 9000
K40X47X18 40 47 18 29000 49500 9000
K40X47X20 40 47 20 32000 56500 9000
K40X48X20 40 48 20 35500 58500 9000
K40X45X30 ZW 40 45 30 26000 53500 9000
42 K42X47X13 42 47 13 17300 33000 9000
K42X47X17 42 47 17 21100 42500 9000
K42X47X25 TN 42 47 25 27000 57500 9000
K42X47X27 42 47 27 33000 74500 9000
K42X48X35 42 48 35 35000 76000 9000
K42X50X18 42 50 18 31000 49500 9000
K42X50X20 42 50 20 34500 56500 9000
K42X47X30 ZW 42 47 30 31000 75500 9000
43 K43X48X17 43 48 17 21000 42500 9000
K43X48X27 43 48 27 33000 74500 9000
K43X50X18 43 50 18 30500 53500 8000
45 K45X49X19 45 49 19 17500 40000 8000
K45X50X17 45 50 17 22000 45000 8000
K45X50X27 45 50 27 34000 79500 8000
K45X50X32 TN 45 50 32 38000 90500 8000
K45X52X18 45 52 18 31000 56500 8000
K45X52X21 TN 45 52 21 39500 57500 8000
K45X53X20 45 53 20 38500 66500 8000
K45X53X21 45 53 21 38000 66500 8000
K45X53X22 45 53 22 42000 66500 8000
K45X53X28 45 53 28 51500 97500 8000
K45X59X18 TN 45 59 18 43500 53500 7000
K45X59X32 45 59 32 72500 101500 7000
K45X59X36 45 59 36 75500 108500 7000
K45X51X36 ZW 45 51 36 44500 98500 7000
47 K47X52X17 47 52 17 22800 48500 8000
K47X52X27 47 52 27 34500 82500 8000
K47X53X25 47 53 25 38000 81500 8000
K47X55X28 47 55 28 52500 99500 7500
48 K48X54X19 48 54 19 30000 60500 7500
K48X54X25 48 54 25 31000 91000 7500
50 K50X55X13.5 50 55 13.5 17500 36000 7500
K50X55X17 50 55 17 21400 46500 7500
K50X55X20 50 55 20 26000 59500 7500
K50X55X30 50 55 30 38500 96500 7500
K50X57X18 50 57 18 33000 62500 7000
K50X58X20 50 58 20 35000 61500 7000
K50X58X25 50 58 25 43500 80500 7000
52 K52X57X12 52 57 12 17500 36000 7000
55 K55X60X20 55 60 20 28000 65500 6500
K55X60X27 55 60 27 37500 96500 6500
K55X60X30 55 60 30 40500 10300 6500
K55X61X20 55 61 20 41000 11000 6500
K55X62X18 55 62 18 35000 69500 6500
K55X63X15 55 63 15 245000 40500 6500
K55X63X20 55 63 20 39500 73500 6500
K55X63X25 55 63 25 49500 99500 6500
K55X63X32 55 63 32 61500 129500 6500
K55X60X40ZW 55 60 40 48000 132000 6500
56 K56X61X20 56 61 20 27000 64500 6500
58 K58X63X17 58 63 17 21500 63500 6000
K58X64X19 58 64 19 24500 77500 6000
K58X65X18 58 65 18 34500 69500 6000
K58X65X38ZW 58 65 38 48500 106500 6000
60 K60X65X20 60 65 20 29000 71500 6000
K60X65X30 60 65 30 42000 115500 6000
K60X68X20 60 68 20 43000 84500 5500
K60X68X23 60 68 23 49000 100500 5500
K60X68X25 60 68 25 52500 110500 5500
K60X68X27 60 68 27 59000 120500 6000
K60X75X42 60 75 42 11300 19200 5500
K60X66X33ZW 60 66 33 45500 111500 6000
K60X66X40ZW 60 66 40 57500 150500 5500
K60X68X30ZW 60 68 30 44000 87500 5500
K60X68X34ZW 60 68 34 47500 95500 5500
62 K62X70X40ZW 62 70 40 65500 145500 5500
63 K63X70X21 63 70 21 45000 100500 5500
64 K47X70X16 64 70 16 27500 59500 5500
65 K65X70X20 65 70 20 30000 76500 5500
K65X70X30 65 70 30 43500 93500 5500
K65X73X23 65 73 23 45500 93500 5000
K65X73X30 65 73 30 56500 122500 5000
68 K68X74X20 68 74 20 35000 83500 5000
K68X74X30 68 74 30 46000 117500 5000
K68X74X35 ZW 68 74 35 48000 124500 5000
K68X75X20 68 75 32 53500 127500 4500
70 K70X76X20 70 76 20 35500 85500 4500
K70X76X30 70 76 30 51500 138500 4500
K70X78X25 70 78 25 51500 111500 4500
K70X78X30 70 78 30 59500 134500 4500
K70X80X30 70 80 30 72500 147500 4500
K70X78X46 ZW 70 78 46 77500 18800 4500
72 K72X80X20 80 20 41000 84500 4500  
73 K73X79X20 73 79 20 36500 99500 4500
75 K75X81X20 75 81 20 37000 93500 4500
K75X81X30 75 81 30 51500 142000 4500
K75X83X23 75 83 23 49500 108000 4000
K75X83X30 75 83 30 91500 142000 4000
K75X83X35 ZW 75 83 35 62500 146500 4000
K75X83X40 ZW 75 83 40 72500 176500 4000
80 K80X86X20 80 86 20 38000 97500 4000
K80X86X30 80 86 30 55500 158500 4000
K80X88X30 80 88 30 71500 178500 4000
K80X88X40 ZW 80 88 40 75500 191500 4000
K80X88X46 ZW 80 88 46 87500 23000 4000
85 K85X92X20 85 92 20 44000 15710 3500
90 K90X97X20 90 97 20 44500 112500 3000
K90X98X27 90 98 27 60500 149500 3000
K90X98X30 90 98 30 67500 171500 3000
95 K95X102X20 95 102 20 45500 122500 2900
K95X103X30 ZW 95 103 30 68500 179500 2900
K95X103X40 ZW 95 103 40 82500 227500 2900
100 K100X107X21 100 107 21 47500 126500 2700
K100X108X27 100 108 27 56500 142500 2700
K100X108X30 100 108 30 70500 187500 2700
105 K105X112X21 105 112 21 47000 126500 2500
K105X113X30 105 113 30 71500 196500 2500
110 K110X117X24 110 117 24 55500 157500 2300
K110X118X30 110 118 30 77500 218500 2300
115 K115X123X27 115 123 27 63000 170000 4100
K115X125X35 115 125 35 63000 170000 4100
K115X125X40 115 125 40 65000 175000 4100

 

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Radial Bearing
Customization:
Available

|

Customized Request

bearing

Types of Ball Bearings

In their most basic form, Ball Bearings have one common feature – they are made of steel. The majority of these bearings are made of 52100 steel, which has one percent chromium and one percent carbon. The steel can be hardened by heat trea
tment. 440C stainless steel is used for rusting problems. A cage around the ball balls is traditionally made from thin steel. However, some bearings use molded plastic cages to save money and friction.

Single-row designs

Steel linear translation stages often use single-row designs for ball bearings. These types of bearings provide smooth linear travel and can withstand high loads. The material steel has a high modulus of elasticity and a high stiffness, as well as a lower thermal expansion than aluminum. For these reasons, steel is the material of choice for a ball bearing in a typical user environment. Single-row designs for ball bearings are also suitable for applications in humid or corrosive environments.
Single-row designs for ball bearings are available in a variety of sizes and are axially adjustable. They have a high radial capacity, but require relatively little space. Single-row deep groove ball bearings with snap rings are STN 02 4605 or R47, respectively. Bearings with snap rings are identified by a suffix such as NR. They may not have seals or shields installed.
These single-row angular contact ball bearings are capable of supporting axial and radial loads. In a two-raceway arrangement, the radial load on bearing A causes a radial load to act on bearing B. Both axial and radial forces are transmitted between single-row angular contact ball bearings, and the resulting internal force must be taken into account to calculate equivalent dynamic bearing loads P.
Single-row deep groove ball bearings are the most common type of ball bearings. These bearings are designed with only one row of rolling elements. The single-row design is simple and durable, which makes it ideal for high-speed applications. Single-row designs for ball bearings are also available in various bore sizes. They can also come in a variety of shapes and are non-separable. If you need a high-speed bearing, you may want to opt for a double-row design.
In addition to single-row designs for ball bearings, you can choose ceramic or steel ball bearings. Ceramic balls are considerably harder than steel balls, but they are not as hard as steel. Hence, ceramic bearings are stiffer than steel ball bearings, resulting in increased stress on the outer race groove and lower load capacity. This is a great benefit for those who need the bearings to be lightweight and strong.
The difference between single-row and double-row designs is in the way that the inner and outer ring are installed. A single-row design places the inner ring in an eccentric position relative to the outer ring. The two rings are in contact at one point, which causes a large gap in the bearing. The balls are then inserted through the gap. As a result, the balls are evenly distributed throughout the bearing, which forces the inner and outer rings to become concentric.
Deep-groove ball bearings are one of the most popular types of ball bearings. They are available in different designs, including snap-ring, seal and shield arrangements. The race diameter of a deep-groove ball bearing is close to the ball’s diameter. These types of bearings are suited for heavy loads, and their axial and radial support are excellent. Their main drawback is that the contact angle cannot be adjusted to accommodate a wide range of relative loads.
bearing

Ceramic hybrid ball bearings

Hybrid ball bearings with ceramic balls have numerous advantages. They feature improved kinematic behavior and require less lubrication. Consequently, they can reduce operating costs. Additionally, their low thermal expansion coefficient allows for smaller changes in contact angle and preload variations, and they can retain tolerances. Furthermore, ceramic hybrid ball bearings have significantly increased life spans compared to conventional steel-steel ball bearings, with up to 10 times the lifespan.
Although ceramic bearings can be used in automotive applications, many people believe that they’re a poor choice for bicycle hubs. They don’t reduce weight and only work well in high-rpm environments. As a result, many cyclists don’t even bother with ceramic-based bearings. However, both Paul Lew and Alan are of the opinion that ceramic bearings are best suited for industrial or medical equipment applications. Furthermore, Paul and Alan believe that they are ideal for high-altitude drone motors.
Another advantage of ceramic hybrid ball bearings is that they use less friction than conventional steel-based balls. They are also more durable, requiring less lubrication than steel-based bearings. Furthermore, the lower friction and rolling resistance associated with ceramic-based ball bearings means that they can last ten times longer than steel-based bearings. A ceramic-based hybrid ball bearing can be used for applications where speed and lubrication are critical.
Ceramic hybrid ball bearings feature both steel and silicon nitride balls. Silicon nitride balls have 50% more modulus of elasticity than steel balls and can improve accuracy and precision. Ceramic balls also have a smoother surface finish than steel balls, which reduces vibration and spindle deflection. These benefits result in increased speed and improved production quality. In addition to this, ceramic balls can also reduce the operating temperature, enhancing the work environment.
Hybrid bearings are a popular alternative to steel bearings. They have some benefits over traditional steel bearings, and are becoming a popular choice for engineered applications. Hybrid bearings are ideal for high speed machines. The material used to manufacture ceramic balls is a high-quality alloy, and is comparatively inexpensive. But you must understand that lubrication is still necessary for hybrid bearings. If you are not careful, you may end up wasting money.
These ball bearings can be used in many industries and applications, and they are widely compatible with most metals. The main advantage of hybrid ball bearings is that they are very durable. While steel balls tend to corrode and wear out, ceramic ball bearings can withstand these conditions while minimizing maintenance and replacement costs. The benefits of hybrid ball bearings are clear. So, consider switching to these newer types of ball bearings.
bearing

Self-aligning ball bearings

Self-aligning ball bearings are a good choice for many applications. They are a great alternative to traditional ball bearings, and they are ideal for rotating applications in which the shaft must move in several directions. They are also ideal for use in rotating parts where a tight tolerance is necessary. You can choose between two types: plain and flex shaft. Read on to find out which one will suit your needs.
Self-aligning ball bearings are designed with a higher axial load carrying capacity than single-row radial deep groove ball bearings. The amount of axial load carrying capacity is dependent upon the pressure angle. These bearings have a hollow raceway in the outer ring that allows the inner ring to pivot without friction. They are often used for high-speed applications. Because of their design, they are highly accurate.
Self-aligning ball bearings are radial bearings that feature two rows of balls in a spherical outer ring. They also feature two deep uninterrupted raceway grooves in the inner ring. Their unique features make them an excellent choice for applications where shaft deflection is a significant factor. Despite their small size, they have a high level of precision and can withstand heavy loads.
Self-aligning ball bearings can compensate for misalignment in shaft applications. The inner ring and ball assembly are positioned inside an outer ring containing a curved raceway. This spherical design allows the balls and cage to deflect and re-align around the bearing center. These bearings are also ideal for applications where shaft deflection is significant, such as in simple woodworking machinery.
Another type of self-aligning ball bearing uses a common concave outer race. Both balls and outer races automatically compensate for angular misalignment caused by machining, assembly, and deflections. Compared to spherical rollers, they have lower frictional losses than their spherical counterparts. Self-alignment ball bearings also have lower vibration levels compared to other types of bearings.
Self-aligning ball bearings operate in misaligned applications because their spherical outer raceway can accommodate misalignment. This design allows them to work in applications where shaft deflection or housing deformation is common. They are therefore more suitable for low to medium-sized loads. The only real drawback to self-aligning ball bearings is their price. If you need to purchase a self-aligning ball bearing for your next project, you can expect to pay around $1500.

China Custom as Washers Assembly Axial Thrust Roller Needle Bearing   deep groove ball bearingChina Custom as Washers Assembly Axial Thrust Roller Needle Bearing   deep groove ball bearing
editor by CX 2023-05-30

China Professional High Precision 20X47X14mm Single Double Row Cylindrical Roller Bearing Nu for Heavy Industries with Hot selling

Product Description

Cylindrical Roller Bearings:

1 Heavy radial and impact loading        
2 Less coefficient of friction
3 Variations of structure
4 Row cylindrical roller bearing feature high radial load because the rollers and raceway are in linear        contact
5 The NU and N types exhibit their best performance when used as free side bearings since they              adjust to the shaft axial movement,to a certain extent, relative to the housing position
6 The NJ and NF types carry a certain degree of axial displacement in both directions so they  are          also used as free side bearings
7 Our company mainly produce both single-row, double-row and four-row cylindrical roller bearings:
   Single-row cylindrical roller bearings (ID.20–1900)
   Double-row cylindrical roller bearings(ID.20–1500)
8 Moreover, we can manufacture these bearings according to customer’s drawings and samples.

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

Rolling Element: Single Row
Structure: To The Heart
Material: Bearing Steel
Samples:
US$ 3.0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

bushing

Bushing Application, Type and Compression Capability

Bushings are cylindrical bushings used in machinery. It prevents wear of moving parts and is often used as an enclosure. Bushings are also known as plain bearings or sleeve bearings. You may be wondering what these parts do and how they work, but this article aims to answer all your questions. We’ll cover bushing applications, types and compression capabilities so you can choose the right one for your needs.

application

A bushing is a mechanical component that plays an important role in many different fields. In addition to being very practical, it helps reduce noise, vibration, wear and provides anti-corrosion properties. These properties help mechanical equipment in various ways, including making it easier to maintain and reducing its overall structure. The functionality of an enclosure depends on its purpose and environment. This article will discuss some of the most common applications of casing.
For example, in an aircraft, the bushing assembly 16 may be used for the bulkhead isolator 40 . The bushing assembly 16 provides the interfaces and paths required for current flow. In this manner, the sleeve assembly provides a secure, reliable connection between two objects with different electrical charges. They also prevent sparking by increasing the electrical conductivity of the component and reducing its resistivity, thereby minimizing the chance of spark formation.
Another common application for bushings is as a support shaft. Unlike bearings, bushings operate by sliding between two moving surfaces. As a result, they reduce friction and handling stress, reducing overall maintenance costs. Typically, the bushing is made of brass or bronze. The benefits of bushings are similar to those of bearings. They help extend the life of rotating machines by reducing frictional energy loss and wear.
In addition to identifying growth opportunities and minimizing risks, the Bushing Anti-Vibration Mounts Market report provides insights into the dynamics of the industry and its key players. The report covers global market size, applications, growth prospects, challenges and regional forecasts. The detailed section on Bushing Anti-Vibration Mounts industry provides insights on demand and supply along with competitive analysis at regional and country level.

type

There are several types of bushings. Among them, the SF6 insulating sleeve has the simplest structure and is based on composite hollow insulators. It also has several metal shielding cylinders for regulating the electric field within the enclosure and another for grounding the metal shield. In addition to being lightweight, this sleeve is also very durable, but the diameter of its shield electrode is very large, which means special installation and handling procedures are required.
Linear bushings are usually pressed into the bore of the shaft and provide support as the shaft moves in/out. Non-press-fit bushings are held in place by snap rings or pins. For certain applications, engineers often choose bushings over bearings and vice versa. That’s why. Below are some common bushing types. If you need to buy, make sure you know how to tell them apart.
OIP bushings are used for oil-filled cable boxes, and oil-to-oil bushings are used for EHV power transformers. The main components of the OIP enclosure are shown in Figure 7a. If you are considering this type of bushing for your specific application, you need to make sure you understand your specific requirements. You can also consult your local engineering department for more information.
All types of bushings should be tested for IR and capacitance. The test tap should be securely attached to the bushing flange. If damaged bushings are found, replace them immediately. Be sure to keep complete records of the enclosure for routine maintenance and any IR testing. Also, be sure to pay attention to tan d and thermal vision measurements.
bushing

Compressive ability

There are several things to consider when choosing an enclosure. First, the material. There are two main types of bushings: those made of filled Teflon and those made of polyester resin. The former has the highest compressive strength, while the latter has a lower compressive capacity. If you need small amounts, glass-filled nylon bushings are the most common and best option. Glass-filled nylon is an economical material with a compressive strength of 36,000 lbs.
Second, the material used for the enclosure must be able to withstand the load. For example, bronze bushings can cause metal shavings to fall into the papermaking process. CG materials can withstand very high levels of moisture, which can damage bushings that require lubrication. Additionally, these materials can operate for extended periods of time without lubrication. This is particularly advantageous in the paper industry, since the casing operates in a humid environment.
In addition to the material and its composition, other characteristics of the enclosure must also be considered, including its operating temperature. Although frictional heat from moving loads and the temperature of the bushing itself can affect the performance of the bushing, these factors determine its service life. For high temperature applications, the PV of the enclosure should be kept low. On the other hand, plastic bushings are generally less heat resistant than metal bushings. In addition, plastic sleeves have a high rate of thermal expansion. To avoid this, size control is also important.
Low pressure bushings have different requirements. An 800 MVA installation requires a low voltage bushing rated at 14 000 A. The palm assembly of the transformer also features a large central copper cylinder for electrical current. The bushing must withstand this amount of current and must maintain an even distribution of current in the transformer tank. If there is a leak, the bushing must be able to resist the leak so as not to damage the transformer.

cost

The cost of new control arm bushings varies widely. Some parts are cheaper than others, and a new part is only $200. However, if you replace the four control bushings in your car, the cost can exceed $1,200. The cost breakdown for each section is listed below. If you plan to replace all four, the cost of each bushing may range from $200 to $500.
The control arm bushing bears the brunt of the forces generated by the tire and is parallel to the direction of the force. However, over time, these components wear out and need to be replaced. Replacing one control arm bushing costs between $300 and $1,200. However, the cost of replacing each arm bushing depends on your car model and driving habits. The control arm bushings should last about 100,000 miles before needing replacement.
The repair process for control arm bushings is time consuming and expensive. Also, they may need to remove the heat shield or bracket. In either case, the procedure is simple. Stabilizer bar brackets are usually attached with one or two mounting bolts. They can also be secured with nuts or threaded holes. All you need is a wrench to remove them.
The control arm bushings are made of two metal cylinders and a thick rubber bushing. These parts can deteriorate from potholes, off-roading or accidents. Because they are made of rubber, the parts are more expensive than new. Buying used ones can save you money because you don’t need to install them yourself. However, if you do plan on fixing a luxury car yourself, be sure to find one that has a warranty and warranty.
bushing

maintain

To prevent your vehicle from overheating and leaking oil, a properly functioning bushing must be used. If the oil level is too low, you will need to check the mounting bolts to make sure they are properly tightened. Check gasket to ensure proper compression is applied, replace bushing if necessary. You should notify your vehicle manufacturer if your vehicle is immersed in oil. Whenever an oil leak occurs, it is very important to replace the oil-filled bushing.
Another important aspect of bushing maintenance is the detection and correction of partial discharges. Partial discharge is caused by current entering the bushing. Partial discharge can cause tree-like structures, cracks and carbonization in the discharge channel, which can eventually damage the casing. Early detection of these processes is critical to ensuring that your vehicle’s bushings are properly maintained. Identifying and repairing partial discharges is critical to ensuring optimal operation, regardless of the type of pump or motor.
To diagnose casing condition, perform several tests. You can use tan d measurement, which is a powerful tool for detecting the ingress of water and moisture. You can also use power factor measurements to detect localized defects and aging effects. You can also check the oil level by performing an infrared check. After completing these tests, you will be able to determine if there is enough oil in the casing.
If the oil level in the transformer is too low, water and air may leak into the transformer. To avoid this problem, be sure to check the MOG and transformer oil levels. If the silicone is pink, replace it. You should also check the function of the oil pump, fan and control circuits annually. Check the physical condition of the pump and fan and whether they need to be replaced. Clean the transformer bushing with a soft cotton cloth and inspect for cracks.

China Professional High Precision 20X47X14mm Single Double Row Cylindrical Roller Bearing Nu for Heavy Industries   with Hot sellingChina Professional High Precision 20X47X14mm Single Double Row Cylindrical Roller Bearing Nu for Heavy Industries   with Hot selling
editor by CX 2023-05-18